Что является метрикой. Можете объяснить максимально простыми словами, что такое метрика пространства-времени? Теория множеств в метрических пространствах

Одной из важнейших операций анализа является предельный переход. В основе этой операции лежит тот факт, что на числовой прямой определено расстояние от одной точки до другой. Многие фундаментальные факты анализа не связаны с алгебраической природой действи­тельных чисел (т. е. с тем, что они образуют поле), а опираются лишь на понятие расстояния. Обобщая представление о действи­тельных числах как о множестве, в котором введено расстояние между элементами, мы приходим к понятию метрического пространства - одному из важнейших понятий современной математики.

Метрическим пространством называется пара (Х, r), состоящая из некоторого множества (пространства) Х элементов (точек) и расстояния, т. е. неотрица­тельной действительной функции r(х,у), определенной для лю­бых х и у из Х и подчиненной следующим трем аксиомам:

1) r(х, у) = 0 тогда и только тогда, когда х = у,

2) r(х, у) = r(у, х) (аксиома симметрии),

3) r(х, г) r(х, у) + r (у, г) (аксиома треугольника).

Само метрическое пространство, т. е. пару (Х, ρ), мы будем обозначать, как правило, одной буквой:

R = (X, ρ).

В случаях, когда недоразумения исключены, мы будем за­частую обозначать метрическое пространство тем же символом, что и сам «запас точек» X.

Приведем примеры метрических пространств. Некоторыеизэтих пространств играют в анализе весьма важную роль.

1. Положив для элементов произвольного множества

мы получим, очевидно, метрическое пространство. Его можно на­звать пространством изолированных точек.

2. Множество действительных чисел с расстоянием

ρ(х, у) = | х - у |

образует метрическое пространствоR 1 .

3. Множество упорядоченных наборов из п действительных чи­сел с расстоянием

называется п -мерным арифметическим евклидовым пространством R n .

4. Рассмотрим то же самое множество наборов из п действительных чи­сел , но расстояние опре­делим в нем формулой

Справедливость аксиом 1)-3) здесь очевидна. Обозначим это метрическое пространство символом R n 1 .

5. Возьмем снова то же самое множество, что и в приме­рах 3 и 4, и определим расстояние между его элементами фор­мулой

Справедливость аксиом 1)-3) очевидна. Это пространство, ко­торое мы обозначим R n ¥ во многих вопросах анализа не менее удобно, чем евклидово пространство R n .

Последние три примера показывают, что иногда и в самом деле важно иметь различные обозначения для самого метриче­ского пространства и для множества его точек, так как один и тот же запас точек может быть по-разному метризован.

6. Множество С всех непрерывных действительных функ­ций, определенных на отрезке с расстоянием


также образует метрическое пространство. Аксиомы1)-3) про­веряются непосредственно. Это пространство играет очень важ­ную роль в анализе. Мы будем его обозначать тем же симво­лом С , что и само множество точек этого пространства.

7. Рассмотрим, как и в примере 6, совокупность всех функ­ций, непрерывных на отрезке С , но расстояние определим иначе, а именно, положим

Такое метрическое пространство мы будем обозначать С 2 и называть пространством непрерывных функций с квад­ратичной метрикой.


Метрическое пространство.

Метри́ческим простра́нством называется множество, в котором определено расстояние между любой парой элементов.

Метрическое пространство есть пара , где - множество (подлежащее множество метрического пространства, множество точек метрического пространства), а - числовая функция (метрика пространства), которая определена на декартовом произведении и принимает значения в множестве вещественных чисел - такая, что для точек

Прим.: Из аксиом следует неотрицательность функции расстояния, поскольку

Сжатые отображения.

Сжатые отображения одно из основных положений теории метрических пространств о существовании и единственности неподвижной точки множества при некотором специальном («сжимающем») отображении его в себя. С. о. п. применяют главным образом в теории дифференциальных и интегральных уравнений.

Произвольное отображение А метрического пространства М в себя, которое каждой точке х из М сопоставляет некоторую точку у = Ax из М , порождает в пространстве М уравнение

Ax = х. (*)

Действие отображения А на точку х можно интерпретировать как перемещение её в точку у = Ax . Точка х называется неподвижной точкой отображения А , если выполняется равенство (*). Т. о. вопрос о разрешимости уравнения (*) является вопросом о нахождении неподвижных точек отображения А .

Отображение А метрического пространства М в себя называется сжатым, если существует такое положительное число a < 1, что для любых точек х и у из М выполняется неравенство

d (Ax, Ау ) £ ad (х, у ),

где символ d (u, u) означает расстояние между точками u и u метрического пространства М .

С. о. п. утверждает, что каждое сжатое отображение полного метрического пространства в себя имеет, и притом только одну, неподвижную точку. Кроме того, для любой начальной точки x 0 из М последовательность {x n }, определяемая рекуррентными соотношениями

x n = Ax n-1 , n = 1,2,...,

имеет своим пределом неподвижную точку х отображения А . При этом справедлива следующая оценка погрешности:

.

С. о. п. позволяет единым методом доказывать важные теоремы о существовании и единственности решений дифференциальных, интегральных и др. уравнений. В условиях применимости С. о. п. решение может быть с наперёд заданной точностью вычислено последовательных приближений методом .

С помощью определённого выбора полного метрического пространства М и построения отображения А эти задачи сводят предварительно к уравнению (*), а затем находят условия, при которых отображение А оказывается сжатым.

Сходимость отображений по этой метрике равнозначна их равномерной сходимости на всём пространстве .

В частном случае, когда - компактное пространство, - числовая прямая, получается пространство всех непрерывных функций на пространстве X с метрикой равномерной сходимости.

Для того, чтобы эта функция стала метрикой, в первых двух пространствах необходимо отождествить функции, отличающиеся на множестве меры 0. В противном случае эта функция будет всего лишь полуметрикой. (В пространстве функций, непрерывных на отрезке, функции, отличающиеся на множестве меры 0, и так совпадают.)

До Римана, Лобачевского, Эйнштейна и некоторых других товарищей геометрия строилась из плоскостей, невидимых точек и бесконечных в обе стороны прямых. Над плоско-трехмерным миром гордо реяло время, воспринимаемое нами как некий процесс, квантуемый для удобства на удары сердца и тиканье часов. Все привычно, прямолинейно, понятно, действуют силы, три координаты в пространстве можно определить где угодно - просто вбей колышек.

Конец идиллии настал с приходом математиков, исследующих на кончике пера многомерные пространства. Они строили сложные, многокоординатные объекты и системы, немыслимые для человеческого глаза и ощущений, например, знаменитый четырехмерный куб, лента Мёбиуса и прочее. Постепенно выяснилось, что воображаемое пространство необязательно должно состоять из плоскостей и прямых с процессом-временем, оно может состоять, например, из свернутого в трубку неправильной формы плоского листа, причем время является длиной оси, проведенной в центре трубки. Поставленная в такое "неправильное" пространство точка уже никогда не будет иметь привычных нам трех координат, так как вбитый колышек не поможет их измерить. Положение поставленной точки в не-евклидовом пространстве нужно будет уже представлять в виде целого массива чисел, который еще и непрерывно изменяется в соответствии с некоторыми правилами. Сами правила в каждом вымышленном пространстве свои. Такой массив чисел называется тензором, он хранит данные о точках пространства примерно в том виде, в каком хранит изображение известная игрушка "картинка из гвоздей": длина каждого стержня есть вектор, указывающий на точку по одной из координат, их сочетание дает одно ее изображение, единственное и неповторимое.

Тензоры - объекты сложные, но у них есть одно общее место - тензор как массив векторов-стержней можно "срезать поперек", определив так называемую матрицу тензора - двухмерную таблицу, в которой вместо обычных чисел формулы, описывающие правила его преобразования. Матрица - простой объект, операции с которым хорошо разработаны еще столетия назад. Головы математиков начали усиленно работать, подставлялись самые разные формулы, строились тензоры для точек самых немыслимых пространств. В конце концов усилиями Минковского, Римана, Лоренца и Эйнштейна были обнаружены простейшие тензоры, описывающие с достаточной точностью воспринимаемое нами трехмерное евклидово пространство и время-процесс. Их матрицы и называются метриками.

В дальнейшем пришло понимание того, что в силу взятого за основу Эйнштейном постоянства скорости света в вакууме метрика Минковского становится неприменимой на очень больших расстояниях между точками, или при очень высоких показателях гравитационного взаимодействия. Головы математиков снова заработали, уже в альянсе с физиками, искавшими экспериментальное подтверждение теорий. Так появилась, например, метрика Шварцшильда, которая описывает наш мир через перемножение матриц тензоров двухмерной прямоугольной плоскости и двухмерной же сферы (она же всем знакомая окружность, но в виде целого пространства). Метрика Шварцшильда позволила описать, почему мы именно так, а не иначе, воспринимаем движение объектов небесной сферы. Время в ней - постоянная величина(!), вводимая отдельно в каждый расчет, а расстояние от точки до наблюдателя - на самом деле некий вектор, дающий описание протяженности пространства(-времени) между двумя не объектами, но событиями.

English: Wikipedia is making the site more secure. You are using an old web browser that will not be able to connect to Wikipedia in the future. Please update your device or contact your IT administrator.

中文: 维基百科正在使网站更加安全。您正在使用旧的浏览器,这在将来无法连接维基百科。请更新您的设备或联络您的IT管理员。以下提供更长,更具技术性的更新(仅英语)。

Español: Wikipedia está haciendo el sitio más seguro. Usted está utilizando un navegador web viejo que no será capaz de conectarse a Wikipedia en el futuro. Actualice su dispositivo o contacte a su administrador informático. Más abajo hay una actualización más larga y más técnica en inglés.

ﺎﻠﻋﺮﺒﻳﺓ: ويكيبيديا تسعى لتأمين الموقع أكثر من ذي قبل. أنت تستخدم متصفح وب قديم لن يتمكن من الاتصال بموقع ويكيبيديا في المستقبل. يرجى تحديث جهازك أو الاتصال بغداري تقنية المعلومات الخاص بك. يوجد تحديث فني أطول ومغرق في التقنية باللغة الإنجليزية تاليا.

Français: Wikipédia va bientôt augmenter la sécurité de son site. Vous utilisez actuellement un navigateur web ancien, qui ne pourra plus se connecter à Wikipédia lorsque ce sera fait. Merci de mettre à jour votre appareil ou de contacter votre administrateur informatique à cette fin. Des informations supplémentaires plus techniques et en anglais sont disponibles ci-dessous.

日本語: ウィキペディアではサイトのセキュリティを高めています。ご利用のブラウザはバージョンが古く、今後、ウィキペディアに接続できなくなる可能性があります。デバイスを更新するか、IT管理者にご相談ください。技術面の詳しい更新情報は以下に英語で提供しています。

Deutsch: Wikipedia erhöht die Sicherheit der Webseite. Du benutzt einen alten Webbrowser, der in Zukunft nicht mehr auf Wikipedia zugreifen können wird. Bitte aktualisiere dein Gerät oder sprich deinen IT-Administrator an. Ausführlichere (und technisch detailliertere) Hinweise findest Du unten in englischer Sprache.

Italiano: Wikipedia sta rendendo il sito più sicuro. Stai usando un browser web che non sarà in grado di connettersi a Wikipedia in futuro. Per favore, aggiorna il tuo dispositivo o contatta il tuo amministratore informatico. Più in basso è disponibile un aggiornamento più dettagliato e tecnico in inglese.

Magyar: Biztonságosabb lesz a Wikipédia. A böngésző, amit használsz, nem lesz képes kapcsolódni a jövőben. Használj modernebb szoftvert vagy jelezd a problémát a rendszergazdádnak. Alább olvashatod a részletesebb magyarázatot (angolul).

Svenska: Wikipedia gör sidan mer säker. Du använder en äldre webbläsare som inte kommer att kunna läsa Wikipedia i framtiden. Uppdatera din enhet eller kontakta din IT-administratör. Det finns en längre och mer teknisk förklaring på engelska längre ned.

हिन्दी: विकिपीडिया साइट को और अधिक सुरक्षित बना रहा है। आप एक पुराने वेब ब्राउज़र का उपयोग कर रहे हैं जो भविष्य में विकिपीडिया से कनेक्ट नहीं हो पाएगा। कृपया अपना डिवाइस अपडेट करें या अपने आईटी व्यवस्थापक से संपर्क करें। नीचे अंग्रेजी में एक लंबा और अधिक तकनीकी अद्यतन है।

We are removing support for insecure TLS protocol versions, specifically TLSv1.0 and TLSv1.1, which your browser software relies on to connect to our sites. This is usually caused by outdated browsers, or older Android smartphones. Or it could be interference from corporate or personal "Web Security" software, which actually downgrades connection security.

You must upgrade your web browser or otherwise fix this issue to access our sites. This message will remain until Jan 1, 2020. After that date, your browser will not be able to establish a connection to our servers.

До сих пор, говоря о расстоянии, мы всегда подразумевали евклидово расстояние. Так, расстояние между векторами мы определили как длину вектора а именно:

Но расстояния можно вычислять и по-другому, используя различные меры длины. Например, рассмотрим упрощенную карту города в виде прямоугольной сетки улиц с двусторонним движением. Тогда адекватной мерой длины может служить кратчайшее расстояние, которое нужно преодолеть, чтобы добраться от одного перекрестка до другого. Иногда такое расстояние называют манхэттенским.

Вместо того чтобы перечислять всевозможные меры длины, большинство из которых нам не понадобится, мы сейчас рассмотрим требования (аксиомы), которым должна удовлетворять произвольная мера длины. Все последующие теоремы о расстояниях будут доказаны в рамках этих аксиом, то есть в наиболее общем виде. В математике принято вместо выражения «мера длины» использовать термин метрика.

Метрика.

Метрикой на множестве X называется вещественная функция d(x, у), определенная на произведении х и удовлетворяющая следующим аксиомам:

б) влечет

г) для всех (неравенство треугольника).

Метрическим пространством называется пара Доказательство того, что евклидово расстояние удовлетворяет аксиомам (а), (б) и (в), тривиально. Неравенство треугольника:

мы доказали в п. 3.1 (теорема 3.1.2). Таким образом, евклидово расстояние является метрикой, которую мы в дальнейшем будем называть евклидовой метрикой.

Рассмотрим один важный класс метрик в пространстве а именно класс -метрик. -метрика является обобщением евклидовой метрики и совпадает с ней при . Для p-метрика определяется следующим образом:

Мы оставим без доказательства следующий факт:

Доказательство того, что -метрика действительно является метрикой, т.е. удовлетворяет аксиомам мы также опускаем. Частично этот вопрос вынесен в упражнения.

Заметим, что в определении метрики мы не стали требовать, чтобы элементы х и у принадлежали пространству . Это дает нам возможность определить множество X, также как и его элементы х, у и т. д., многими разными способами. Наша задача состоит в том, чтобы указать при каких условиях фрактальное построение сходится. Для этого нужно уметь измерять расстояние между компактными множествами, то есть необходимо определить соответствующую метрику.

Теория множеств в метрических пространствах.

Нам предстоит сделать большой шаг вперед и распространить теоретикомножественные определения п. 3.1, подразумевавшие евклидову метрику, на произвольные метрики. Открытый шар в метрическом пространстве (X, d) определяется следующим образом:

С учетом (3.4), мы можем оставить без изменений данные выше определения следующих понятий:

Например, множество является открытым множеством тогда и только тогда, когда для любого можно указать открытый шар (в смысле определения (3.4)), который содержится в Е. В список вошли без изменений все определения, кроме понятия компактности. Строгое определение компактного множества в произвольном метрическом пространстве дается в прил. Так как нас в основном будет интересовать компактность подмножеств пространства то определение, данное выше (замкнутость и ограниченность), остается в силе.

Если - метрика на множестве X, а - взаимно однозначная вещественная функция, то

также есть метрика на X. Аксиомы (а) и (в), очевидно, выполнены. удовлетворяет аксиоме (б), так как - взаимно однозначная функция. Аксиома (г) запишется в виде неравенства:

то есть классического неравенства треугольника для вещественных чисел. Пример метрики, заданной таким образом:

Говорят, что две метрики, , определенные на множестве X, эквивалентны, если можно указать такие что:

Можно показать, что любые две -метрики в пространстве где эквивалентны (случай вынесен в упр. 3 в конце этого параграфа). С другой стороны, метрики на множестве R не эквивалентны (упр. 4 в конце этого параграфа).

По-видимому, основным следствием эквивалентности метрик для теории фракталов является тот факт, что фрактальная размерность (глава 5) сохраняется при замене метрики на эквивалентную. Более того, если множество открыто (замкнуто) в одной метрике, то оно открыто (замкнуто) и в любой эквивалентной метрике. Далее, если множество ограничено в одной метрике, то оно ограничено и в любой эквивалентной метрике. То же самое относится и к совершенным, связным и вполне разрывным множествам.

Сходимость.

Пусть - метрика на множестве X. Последовательность точек метрического пространства X сходится к пределу в метрике d, если последовательность чисел сходится к нулю в обычном смысле, то есть если:

Здесь эквивалентность метрик выражается в следующем. Если метрики эквивалентны, то в -метрике тогда и только тогда, когда в -метрике, так как:

Если то и наоборот.

Непрерывность.

В курсе математического анализа функция определенная на X, называется непрерывной в точке , если.