Окисление алкенов. Реакции окисления органических веществ. Виды изомерии алкенов

18. Окислительно-восстановительные реакции (продолжение 2)


18.9. ОВР с участием органических веществ

В ОВР органических веществ с неорганическими органические вещества чаще всего являются восстановителями. Так, при сгорании органического вещества в избытке кислорода всегда образуется углекислый газ и вода. Сложнее протекают реакции при использовании менее активных окислителей. В этом параграфе рассмотрены только реакции представителей важнейших классов органических веществ с некоторыми неорганическими окислителями.

Алкены. При мягком окислении алкены превращаются в гликоли (двухатомные спирты). Атомы-восстановители в этих реакциях – атомы углерода, связанные двойной связью.

Реакция с раствором перманганата калия протекает в нейтральной или слабо щелочной среде следующим образом:

C 2 H 4 + 2KMnO 4 + 2H 2 O CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH (охлаждение)

В более жестких условиях окисление приводит к разрыву углеродной цепи по двойной связи и образованию двух кислот (в сильно щелочной среде – двух солей) или кислоты и диоксида углерода (в сильно щелочной среде – соли и карбоната):

1) 5CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 12H 2 SO 4 5CH 3 COOH + 5C 2 H 5 COOH + 8MnSO 4 + 4K 2 SO 4 + 17H 2 O (нагревание)

2) 5CH 3 CH=CH 2 + 10KMnO 4 + 15H 2 SO 4 5CH 3 COOH + 5CO 2 + 10MnSO 4 + 5K 2 SO 4 + 20H 2 O (нагревание)

3) CH 3 CH=CHCH 2 CH 3 + 6KMnO 4 + 10KOH CH 3 COOK + C 2 H 5 COOK + 6H 2 O + 6K 2 MnO 4 (нагревание)

4) CH 3 CH=CH 2 + 10KMnO 4 + 13KOH CH 3 COOK + K 2 CO 3 + 8H 2 O + 10K 2 MnO 4 (нагревание)

Дихромат калия в сернокислотной среде окисляет алкены аналогично реакциям 1 и 2.

Алкины. Алкины начинают окисляются в несколько более жестких условиях, чем алкены, поэтому они обычно окисляются с разрывом углеродной цепи по тройной связи. Как и в случае алканов, атомы-восстановители здесь – атомы углерода, связанные в данном случае тройной связью. В результате реакций образуются кислоты и диоксид углерода. Окисление может быть проведено перманганатом или дихроматом калия в кислотной среде, например:

5CH 3 C CH + 8KMnO 4 + 12H 2 SO 4 5CH 3 COOH + 5CO 2 + 8MnSO 4 + 4K 2 SO 4 + 12H 2 O (нагревание)

Иногда удается выделить промежуточные продукты окисления. В зависимости от положения тройной связи в молекуле это или дикетоны (R 1 –CO–CO–R 2), или альдокетоны (R–CO–CHO).

Ацетилен может быть окислен перманганатом калия в слабощелочной среде до оксалата калия:

3C 2 H 2 + 8KMnO 4 = 3K 2 C 2 O 4 +2H 2 O + 8MnO 2 + 2KOH

В кислотной среде окисление идет до углекислого газа:

C 2 H 2 + 2KMnO 4 +3H 2 SO 4 =2CO 2 + 2MnSO 4 + 4H 2 O + K 2 SO 4

Гомологи бензола. Гомологи бензола могут быть окислены раствором перманганата калия в нейтральной среде до бензоата калия:

C 6 H 5 CH 3 +2KMnO 4 = C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O (при кипячении)

C 6 H 5 CH 2 CH 3 + 4KMnO 4 = C 6 H 5 COOK + K 2 CO 3 + 2H 2 O + 4MnO 2 + KOH (при нагревании)

Окисление этих веществ дихроматом или перманганатом калия в кислотной среде приводит к образованию бензойной кислоты.

Спирты. Непосредственным продуктом окисления первичных спиртов являются альдегиды, а вторичных – кетоны.

Образующиеся при окислении спиртов альдегиды легко окисляются до кислот, поэтому альдегиды из первичных спиртов получают окислением дихроматом калия в кислотной среде при температуре кипения альдегида. Испаряясь, альдегиды не успевают окислиться.

3C 2 H 5 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O (нагревание)

С избытком окислителя (KMnO 4 , K 2 Cr 2 O 7) в любой среде первичные спирты окисляются до карбоновых кислот или их солей, а вторичные – до кетонов. Третичные спирты в этих условиях не окисляются, а метиловый спирт окисляется до углекислого газа. Все реакции идут при нагревании.

Двухатомный спирт, этиленгликоль HOCH 2 –CH 2 OH, при нагревании в кислотной среде с раствором KMnO 4 или K 2 Cr 2 O 7 легко окисляется до углекислого газа и воды, но иногда удается выделить и промежуточные продукты (HOCH 2 –COOH, HOOC–COOH и др.).

Альдегиды. Альдегиды – довольно сильные восстановители, и поэтому легко окисляются различными окислителями, например: KMnO 4 , K 2 Cr 2 O 7 , OH. Все реакции идут при нагревании:

3CH 3 CHO + 2KMnO 4 = CH 3 COOH + 2CH 3 COOK + 2MnO 2 + H 2 O
3CH 3 CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 COOH + Cr 2 (SO 4) 3 + 7H 2 O
CH 3 CHO + 2OH = CH 3 COONH 4 + 2Ag + H 2 O + 3NH 3

Формальдегид с избытком окислителя окисляется до углекислого газа.

18.10. Сравнение окислительно-восстановительной активности различных веществ

Из определений понятий " атом-окислитель" и " атом-восстановитель" следует, что только окислительными свойствами обладают атомы в высшей степени окисления. Наоборот, только восстановительными свойствами обладают атомы в низшей степени окисления. Атомы, находящиеся в промежуточных степенях окисления, могут быть как окислителями, так и восстановителями.

Вместе с тем, основываясь только на степени окисления, невозможно однозначно оценить окислительно-восстановительные свойства веществ. В качестве примера рассмотрим соединения элементов VA группы. Соединения азота(V) и сурьмы(V) являются более или менее сильными окислителями, соединения висмута(V) – очень сильные окислители, а соединения фосфора(V) окислительными свойствами практически не обладают. В этом и других подобных случаях имеет значение, насколько данная степень окисления характерна для данного элемента, то есть, насколько устойчивы соединения, содержащие атомы данного элемента в этой степени окисления.

Любая ОВР протекает в направлении образования более слабого окислителя и более слабого восстановителя. В общем случае возможность протекания какой-либо ОВР, как и любой другой реакции, может быть определена по знаку изменения энергии Гиббса. Кроме того, для количественной оценки окислительно-восстановительной активности веществ используют электрохимические характеристики окислителей и восстановителей (стандартные потенциалы окислительно-восстановительных пар). Основываясь на этих количественных характеристиках, можно построить ряды окислительно-восстановительной активности различных веществ. Известный вам ряд напряжений металлов построен именно таким образом. Этот ряд дает возможность сравнивать восстановительные свойства металлов в водных растворах, находящихся в стандартных условиях (с = 1 моль/л, Т = 298,15 К), а также окислительные свойства простых аквакатионов. Если в верхней строке этого ряда поместить ионы (окислители), а в нижней – атомы металлов (восстановители), то левая часть этого ряда (до водорода) будет выглядеть так:

В этом ряду окислительные свойства ионов (верхняя строка) усиливаются слева направо, а восстановительные свойства металлов (нижняя строка), наоборот, справа налево.

Учитывая различия в окислительно-восстановительной активности в разных средах, можно построить аналогичные ряды и для окислителей. Так, для реакций в кислотной среде (pH = 0) получается " продолжение" ряда активности металлов в направлении усиления окислительных свойств

Как и в ряду активности металлов, в этом ряду окислительные свойства окислителей (верхняя строка) усиливаются слева направо. Но, используя этот ряд, сравнивать восстановительную активность восстановителей (нижняя строка) можно только в том случае, когда их окисленная форма совпадает с приведенной в верхней строке; в этом случае она усиливается справа налево.

Рассмотрим несколько примеров. Чтобы узнать, возможна ли данная ОВР будем использовать общее правило, определяющее направление протекания окислительно-восстановительных реакций (реакции протекают в направлении образования более слабого окислителя и более слабого восстановителя).

1. Можно ли магнием восстановить кобальт из раствора CoSO 4 ?
Магний более сильный восстановитель, чем кобальт, и ионы Co 2 более сильные окислители, чем ионы Mg 2 , следовательно, можно.
2. Можно ли раствором FeCl 3 окислить медь до CuCl 2 в кислотной среде?
Так как ионы Fe 3B более сильные окислители, чем ионы Cu 2 , а медь более сильный восстановитель, чем ионы Fe 2 , то можно.
3. Можно ли, продувая кислород через подкисленный соляной кислотой раствор FeCl 2 , получить раствор FeCl 3 ?
Казалось бы нет, так как в нашем ряду кислород стоит левее ионов Fe 3 и является более слабым окислителем, чем эти ионы. Но в водном растворе кислород практически никогда не восстанавливается до H 2 O 2 , в этом случае он восстанавливается до H 2 O и занимает место между Br 2 и MnO 2 . Следовательно такая реакция возможна, правда, протекает она довольно медленно (почему?).
4. Можно ли в кислотной среде перманганатом калия окислить H 2 O 2 ?
В этом случае H 2 O 2 восстановитель и восстановитель более сильный, чем ионы Mn 2B , а ионы MnO 4 окислители более сильные, чем образующийся из пероксида кислород. Следовательно, можно.

Аналогичный ряд, построенный для ОВР в щелочной среде, выглядит следующим образом:

В отличие от " кислотного" ряда, этот ряд нельзя использовать совместно с рядом активности металлов.

Метод электронно-ионного баланса (метод полуреакций), межмолекулярные ОВР, внутримолекулярные ОВР, ОВР дисмутации (диспропорционирования, самоокисления-самовосстановления), ОВР конмутации, пассивация.

  1. Используя метод электронно-ионого баланса, составьте уравнения реакций, протекающих при добавлении к подкисленному серной кислотой раствору перманганата калия раствора а) H 2 S {S, точнее, S 8 }; б) KHS; в) K 2 S; г) H 2 SO 3 ; д) KHSO 3 ; е) K 2 SO 3 ; ё) HNO 2 ; ж) KNO 2 ; и) KI {I 2 }; к) FeSO 4 ; л) C 2 H 5 OH {CH 3 COOH}; м) CH 3 CHO; н) (COOH) 2 {CO 2 }; п) K 2 C 2 O 4 . Здесь и далее в необходимых случаях в фигурных скобках указаны продукты окисления.
  2. Составьте уравнения реакций, протекающих при пропускании следующих газов через подкисленный серной кислотой раствор перманганата калия: а) C 2 H 2 {CO 2 }; б) C 2 H 4 {CO 2 }; в) C 3 H 4 (пропин) {CO 2 и CH 3 COOH}; г) C 3 H 6 ; д) CH 4 ; е) HCHO.
  3. То же, но раствор восстановителя добавлен к нейтральному раствору перманганата калия: а) KHS; б) K 2 S; в) KHSO 3 ; г) K 2 SO 3 ; д) KNO 2 ; е) KI.
  4. То же, но в раствор перманганата калия предварительно добавлен раствор гидроксида калия: а) K 2 S {K 2 SO 4 }; б) K 2 SO 3 ; в) KNO 2 ; г) KI {KIO 3 }.
  5. Составьте уравнения следующих реакций, протекающих в растворе: а) KMnO 4 + H 2 S ...;
    б) KMnO 4 + HCl ...;
    в) KMnO 4 + HBr ...;
    г) KMnO 4 + HI ...
  6. Составьте следующие уравнения ОВР диоксида марганца:
  7. К подкисленному серной кислотой раствору дихромата калия добавлены растворы следующих веществ: а) KHS; б) K 2 S; в) HNO 2 ; г) KNO 2 ; д) KI; е) FeSO 4 ; ж) CH 3 CH 2 CHO; и) H 2 SO 3 ; к) KHSO 3 ; л) K 2 SO 3 . Составьте уравнения протекающих реакций.
  8. То же, но через раствор пропущены следующие газы: а) H 2 S; б) SO 2 .
  9. К раствору хромата калия, содержащему гидроксид калия, добавлены растворы а) K 2 S {K 2 SO 4 }; б) K 2 SO 3 ; в) KNO 2 ; г) KI {KIO 3 }. Составьте уравнения протекающих реакций.
  10. К раствору хлорида хрома(III) прибавили раствор гидроксида калия до растворения первоначально образовавшегося осадка, а затем – бромную воду. Составьте уравнения протекающих реакций.
  11. То же, но на последнем этапе был добавлен раствор пероксодисульфата калия K 2 S 2 O 8 , восстановивегося в процессе реакции до сульфата.
  12. Составьте уравнения реакций, протекающих в растворе:
  13. а) CrCl 2 + FeCl 3 ; б) CrSO 4 + FeCl 3 ; в) CrSO 4 + H 2 SO 4 + O 2 ;

    г) CrSO 4 + H 2 SO 4 + MnO 2 ; д) CrSO 4 + H 2 SO 4 + KMnO 4 .

  14. Составьте уравнения реакций, протекающих между твердым триоксидом хрома и следующими веществами: а) C; б) CO; в) S {SO 2 }; г) H 2 S; д) NH 3 ; е) C 2 H 5 OH {CO 2 и H 2 O}; ж) CH 3 COCH 3 .
  15. Составьте уравнения реакций, протекающих при добавлении в концентрированную азотную кислоту следующих веществ: а) S {H 2 SO 4 }; б) P 4 {(HPO 3) 4 }; в) графит; г) Se; д) I 2 {HIO 3 }; е) Ag; ж) Cu; и) Pb; к) KF; л) FeO; м) FeS; н) MgO; п) MgS; р) Fe(OH) 2 ; с) P 2 O 3 ; т) As 2 O 3 {H 3 AsO 4 }; у) As 2 S 3 ; ф) Fe(NO 3) 2 ; х) P 4 O 10 ; ц) Cu 2 S.
  16. То же, но при пропускании следующих газов: а) CO; б) H 2 S; в) N 2 O; г) NH 3 ; д) NO; е) H 2 Se; ж) HI.
  17. Одинаково, или по-разному будут протекать реакции в следующих случаях: а) в высокую пробирку на две трети заполненную концентрированной азотной кислотой, поместили кусочек магния; б) на поверхность магниевой пластины поместили каплю концентрированной азотной кислоты? Составьте уравнения реакций.
  18. В чем отличие реакции концентрированной азотной кислоты с сероводородной кислотой и с газообразным сероводородом? Составьте уравнения реакций.
  19. Одинаково ли будут протекать ОВР при добавлении к концентрированному раствору азотной кислоты безводного кристаллического сульфида натрия и его 0,1 M раствора?
  20. Концентрированной азотной кислотой обработали смесь следующих веществ: Cu, Fe, Zn, Si и Cr. Составьте уравнения протекающих реакций.
  21. Составьте уравнения реакций, протекающих при добавлении в разбавленную азотную кислоту следующих веществ: а) I 2 ; б) Mg; в) Al; г) Fe; д) FeO; е) FeS; ж) Fe(OH) 2 ; и) Fe(OH) 3 ; к) MnS; л) Cu 2 S; м) CuS; н) CuO; п) Na 2 S кр; р) Na 2 S р; с) P 4 O 10 .
  22. Какие процессы будут протекать при пропускании через разбавленный раствор азотной кислоты а) аммиака, б) сероводорода, в) диоксида углерода?
  23. Составьте уравнения реакций, протекающих при добавлении в концентрированную серную кислоту следующих веществ: а) Ag; б) Cu; в) графит; г) HCOOH; д) С 6 H 12 O 6 ; е) NaCl кр; ж) C 2 H 5 OH.
  24. При пропускании через холодную концентрированную серную кислоту сероводорода образуется S и SO 2 , горячая концентрированная H 2 SO 4 окисляет серу до SO 2 . Составьте уравнения реакций. Как будет протекать реакция между горячей концентрированной H 2 SO 4 и сероводородом?
  25. Почему хлороводород получают, обрабатывая кристаллический хлорид натрия концентрированной серной кислотой, а бромоводород и йодоводород этим способом не получают?
  26. Составьте уравнения реакций, протекающих при взаимодействии разбавленной серной кислоты с а) Zn, б) Al, в) Fe, г) хромом в отсутствии кислорода, д) хромом на воздухе.
  27. Составьте уравнения реакций, характеризующих окислительно-восстановительные свойства пероксида водорода:
  28. В каких из этих реакций пероксид водорода является окислителем, а в каких – восстановителем?

  29. Какие реакции протекают при нагревании следующих веществ: а) (NH 4) 2 CrO 4 ; б) NaNO 3 ; в) CaCO 3 ; г) Al(NO 3) 3 ; д) Pb(NO 3) 3 ; е) AgNO 3 ; ж) Hg(NO 3) 2 ; и) Cu(NO 3) 2 ; к) CuO; л) NaClO 4 ; м) Ca(ClO 4) 2 ; н) Fe(NO 3) 2 ; п) PCl 5 ; р) MnCl 4 ; с) H 2 C 2 O 4 ; т) LiNO 3 ; у) HgO; ф) Ca(NO 3) 2 ; х) Fe(OH) 3 ; ц) CuCl 2 ; ч) KClO 3 ; ш) KClO 2 ; щ) CrO 3 ?
  30. При сливании горячих растворов хлорида аммония и нитрата калия протекает реакция, сопровождающаяся выделением газа. Составьте уравнение этой реакции.
  31. Составьте уравнения реакций, протекающих при пропускании через холодный раствор гидроксида натрия а) хлора, б) паров брома. То же, но через горячий раствор.
  32. При взаимодействии с горячим концентрированным раствором гидроксида калия селен подвергается дисмутации до ближайших устойчивых степеней окисления (–II и +IV). Составьте уравнение этой ОВР.
  33. При тех же условиях сера подвергается аналогичной дисмутации, но при этом избыток серы реагирует с сульфит-ионами с образованием тиосульфат ионов S 2 O 3 2 . Составьте уравнения протекающих реакций. ;
  34. Составьте уравнения реакций электролиза а) раствора нитрата меди с серебряным анодом, б) раствора нитрата свинца с медным анодом.
Опыт 1. Окислительные свойства перманганата калия в кислотной среде. K 3-4 каплям раствора перманганата калия прилить равный объем разбавленного раствора серной кислоты, а затем раствор сульфита натрия до обесцвечивания. Составить уравнение реакции.

Опыт 2. Окислительные свойства перманганата калия в нейтральной среде. К 3-4 каплям раствора перманганата калия прилить 5-6 капель раствора сульфита натрия. Какое вещество выделилось в виде осадка?

Опыт 3 . Окислительные свойства перманганата калия в щелочной среде. К 3-4 каплям раствора перманганата калия прилить 10 капель концентрированного раствора гидроксида натрия и 2 капли раствора сульфита натрия. Раствор должен приобрести зеленую окраску.

Опыт 4 . Окислительные свойства дихромата калия в кислотной среде. 6 капель раствора дихромата калия подкислить четырьмя каплями разбавленного раствора серной кислоты и добавить раствор сульфита натрия до изменения окраски смеси.

Опыт 5. Окислительные свойства разбавленной серной кислоты. В одну пробирку поместить гранулу цинка, а в другую – кусочек медной ленты. В обе пробирки добавить 8-10 капель разбавленного раствора серной кислоты. Сравнить происходящие явления. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 6. Окислительные свойства концентрированной серной кислоты. Аналогично опыту 5, но добавить концентрированный раствор серной кислоты. Через минуту после начала выделения газообразных продуктов реакции ввести в пробирки полоски фильтровальной бумаги, смоченные растворами перманганата калия и сульфата меди. Объяснить происходящие явления. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 7. Окислительные свойства разбавленной азотной кислоты. Аналогично опыту 5, но добавить разбавленный раствор азотной кислоты. Наблюдать изменение цвета газообразных продуктов реакции. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 8 . Окислительные свойства концентрированной азотной кислоты. В пробирку поместить кусочек медной ленты и прилить 10 капель концентрированного раствора азотной кислоты. Осторожно нагреть до полного растворения металла. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 9 . Окислительные свойства нитрита калия. К 5-6 каплям раствора нитрита калия прилить равный объем разбавленного раствора серной кислоты и 5 капель раствора иодида калия. Образование каких веществ наблюдается?

Опыт 10 . Восстановительные свойства нитрита калия. К 5-6 каплям раствора перманганата калия добавить равный объем разбавленного раствора серной кислоты и раствор нитрита калия до полного обесцвечивания смеси.

Опыт 11. Термическое разложение нитрата меди. Один микрошпатель тригидрата нитрата меди поместить в пробирку, закрепить ее в штативе и осторожно нагреть открытым пламенем. Наблюдать обезвоживание и последующее разложение соли. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 12 . Термическое разложение нитрата свинца. Провести аналогично опыту 11, поместив в пробирку нитрат свинца. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ! В чем отличие процессов, протекающих при разложении этих солей?

Алкины с неконцевой тройной связью служат потенциальным источником для синтеза 1,2-дикетонов при действии подходящего окислителя. Однако до сих пор не найдено универсального реагента, вызывающего окисление тройной углерод–углеродной связи до 1,2-дикарбонильной группы. Предлагавшийся для этой цели RuO 4 – оксид рутения (VIII) – слишком дорог и часто вызывает дальнейшую окислительную деструкцию 1,2-дикетонов до карбоновых кислот. При взаимодействии дизамещенных ацетиленов с такими сильными окислителями, как перманганат калия, только в совершенно нейтральной среде при рН 7–8 при 0 С окисление удается остановить на стадии образования -дикетона. Так, например, стеароловая кислота при рН 7,5 окисляется до -дикетона. В большинстве случаев окисление сопровождается расщеплением тройной связи с образованием карбоновых кислот:

Выход продуктов окислительной деструкции алкинов невелик, и эта реакция не играет заметной роли в органическом синтезе. Она используется исключительно для доказательства строения природной ацетиленовой кислоты, содержащейся в листьях тропических растений в Центральной Америке. При ее окислительной деструкции были выделены две кислоты – лауриновая и адипиновая. Это означает, что исходная кислота представляет собой 6-октадециновую кислоту с нормальным углеродным скелетом из семнадцати атомов углерода:

Гораздо более важное значение имеет окислительное сочетание алкинов-1, катализируемое солями меди (реакция Глазера–Эглинтона). В 1870 г. Глазер обнаружил, что суспензия ацетиленида меди (I), в спирте окисляется кислородом воздуха с образованием 1,3-диинов:

Для окисления ацетиленидов меди (I) в качестве окислителя более эффективен гексацианоферрат (III) калия K 3 в ДМЭ или ДМФА. В 1959 г. Эглинтон предложил значительно более удобную модификацию окислительной конденсации алкинов. Алкин окисляют ацетатом меди (II) в растворе пиридина при 60–70 С. Модификация Эглинтона оказалась чрезвычайно полезной для синтеза макроцикличеких полиинов из ,-диинов. В качестве иллюстрации приведем синтез двух циклополиинов при окислительной конденсации гексадиина-1,5 (Ф. Зондхеймер, 1960):

Один из полиинов представляет собой продукт циклотримеризации, другой – циклотетрамеризации исходного гесадиина-1,5. Тример служит исходным реагентом для синтеза ароматического -аннулена (подробнее об аннуленах см. в гл. 12). Аналогично в тех же условиях нонадиина-1,8 получается его димер – 1,3,10,12-циклооктадекатетраен наряду с тримером, тетрамером и пентамером:

Для получения несимметричных диинов используют конденсацию галогенацетиленов с алкином-1 (терминальным алкином) в присутствии солей меди (I) и первичного амина (сочетание по Кадио–Ходкевичу, 1957 г.):

Исходные бромалкины получаются при действии на алкины-1 гипобромита натрия или из ацетиленидов лития и брома:

Медьорганическое производное теминального алкина генерируют непосредственно в реакционной смеси из Cu 2 Cl 2 и алкина-1.

6.3.4. Реакции электрофильного присоединения к тройной связи

Реакции электрофильного присоединения к тройной связи относятся к числу наиболее типичных и важных реакций алкинов. В отличие от электрофильного присоединения к алкенам синтетическое применение этой большой группы реакций намного опережало развитие теоретических представлений о ее механизме. Однако за последние двадцать лет положение существенно изменилось и в настоящее время это одна из бурно развивающихся областей физической органической химии. ВЗМО алкина располагается ниже, чес ВЗМО алкена (гл. 2), и это обстоятельство предопределяет в подавляющем большинстве случаев более низкую скорость присоединения электрофильного агента к алкину по сравнению с алкеном. Другим фактором, определяющим различие в реакционной способности алкинов и алкенов в реакциях электрофильного присоединения, является относительная стабильность интермедиатов, возникающих при присоединении электрофильной частицы к тройной и двойной связям. При присоединении электрофильной частицы Н + или Е + к двойной связи образуется циклический или открытый карбокатион (гл. 5). Присоединение Н + или Е + к тройной связи приводит к образованию открытого или циклического винил-катиона. В линейном открытом винил-катионе центральный атом углерода находится в sp -гибридном состоянии, в то время как вакантная р -орбиталь ортогональна -связи. Поскольку sp -гибридный атом углерода винил-катиона обладает более высокой электроотрицательностью по сравнению с sp 2 -гибридным атомом алкил-катиона, винил-катион должен быть менее стабилен по сравнению с алкил-катионом:

Данные квантовомеханических расчетов, а также термодинамические данные для газовой фазы, полученные с помощью масс-спектрометрии высокого давления и спектроскопии циклотронного резонанса, находятся в полном соответствии с этими рассуждениями. В табл. 6.3 приведены термодинамические данные для образования ряда карбокатионов и углеводородов, относящиеся к газовой фазе при 25 С.

Карбокатион

ΔН f ˚ ккал/моль

Из данных, представленных в тал. 6.3, следует, что винил-катион на 47 ккал/моль менее стабилен, чем содержащий то же число атомов этил-катион. Тот же вывод можно сделать и из энтальпии ионизации в газовой фазе CH 3 CH 2 Cl и CH 2 =CHCl:

Нетрудно заметить, что сочетание обоих факторов - более высокой энергии винил-катиона и низко расположенной ВЗМО алкина - представляет более низкую реакционную способность алкинов по сравнению с алкенами в реакциях электрофильного присоединения. В табл. 6.4 собраны сравнительные данные по присоединению галогенов, сульфен- и селенилхлоридов, трифторуксусной кислоты и воды к различным алкенам и алкинам, не содержащим какой-либо активирующей или дезактивирующей функциональной группы.

Таблица 6.4

Сравнительная характеристика алкинов и алкенов

в реакциях электрофильного присоединения

Субстраты

К алкен /К алкин

Бромирование в уксусной кислоте

СН 2 CH 2 /НССН

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Хлорирование в уксусной кислоте

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

С 4 Н 9 СН=СН 2 /С 6 Н 5 ССН

С 2 Н 5 С=СНС 2 Н 5 /С 2 Н 5 ССС 2 Н 5

Присоединение 4-хлорфенилсульфенхлорида

п -ClС 6 H 4 SeCl

СН 2 =СН 2 /НССН

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Присоединение фенилселенхлорида С 6 Н 5 SeCl

СН 2 =СН 2 /НССН

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Присоединение трифторуксусной кислоты

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

С 2 Н 5 СН=СН 2 /С 2 Н 5 ССН

Кислотно-катализируемая гидратация

С 4 Н 9 СН=СН 2 /С 4 Н 9 ССН

С 2 Н 5 СН=СНС 2 Н 5 /С 2 Н 5 ССС 2 Н 5

С 6 Н 5 СН=СН 2 /С 6 Н 5 ССН

Из этих данных следует, что только присоединение кислотных агентов и воды к тройной и двойной связям происходит с близкими скоростями. Присоединение галогенов, сульфенхлоридов и ряда других реагентов к алкенам протекает в 10 2  10 5 раз быстрее, чем к алкинам. Это означает, что углеводороды, содержащие несопряженные тройную и двойную связи, избирательно присоединяют эти реагенты по двойной связи, например:

К данным по сравнительной гидратации алкинов и алкенов следует относиться с осторожностью, поскольку для гидратации алкинов требуется катализ ионами ртути (II), который неэффективен для присоединения воды к двойной связи. Поэтому данные по гидратации тройной и двойной связи, строго говоря, не сопоставимы.

Присоединение галогенов, галогеноводородов, сульфенхлоридов и других электрофильных агентов можно осуществлять ступенчато, что легко проиллюстрировать с помощью следующих примеров:

Данный материал может быть сложен в освоении при самостоятельном обучении, ввиду большого объема информации, многих нюансов, всевозможных НО и ЕСЛИ. Читать внимательно!

О чем именно пойдет речь?

Помимо полного окисления (горения), для некоторых классов органических соединений характерны реакции неполного окисления, при этом они превращаются в другие классы.

Существуют специфические окислители для каждых классов: CuO(для спиртов),Cu(OH) 2 и OH (для альдегидов) и другие.

Но есть два классических окислителя, которые, если так можно выразиться, универсальные для многих классов.

Это перманганат калия – KMnO 4 . И бихромат (дихромат) калия – K 2 Cr 2 O 7 . Эти вещества являются сильными окислителями за счет марганца в степени окисления +7, и хрома в степени окисления +6, соответственно.

Реакции с этими окислителями встречаются довольно часто, однако нигде нет целостного руководства, по какому принципу выбирать продукты таких реакций.

На практике действует очень много факторов, влияющих на ход реакции (температура, среда, концентрация реагентов и т.д.). Часто получается смесь продуктов. Поэтому предугадать продукт, который образуется практически невозможно.

А для ЕГЭ это не годится: там нельзя написать «может быть или так, или вот так, или иначе, или смесь продуктов». Там нужна конкретика.

Составители заданий вложили определенную логику, определенный принцип по которому следует писать определенный продукт. К сожалению, они ни с кем не поделились.

Данный вопрос в большинстве пособий довольно скользко обходится стороной: в качестве примера приведено две-три реакции.

Представляю в этой статье, то, что можно назвать результатами исследования-анализа заданий ЕГЭ. Логика и принципы составления реакций окисления перманганатом и дихроматом разгадана довольно с высокой точностью (в соответствии со стандартами ЕГЭ). Обо всем по порядку.

Определение степени окисления .

Первое, когда имеем дело с окислительно-восстановительными реакциями, всегда есть окислитель и восстановитель.

Окислителем является марганец в перманганате или хром в дихромате, восстановителем – атомы в органике (а именно – атомы углерода).

Мало определить продукты, реакция должна быть уравнена. Для уравнивания традиционно используют метод электронного баланса. Для применения этого метода необходимо определить степени окисления восстановителей и окислителей до и после реакции.

У неорганических веществ степени окисления умеем с 9 класса:

А вот в органике, наверное, в 9 классе не определяли. Поэтому прежде, чем научиться писать ОВР в органической химии, нужно научиться определять степень окисления углерода в органических веществах. Делается это немного по-другому, иначе чем в неорганической химии.

У углерода максимальная степень окисления +4, минимальная -4. И он может проявлять любую степень окисления этого промежутка: -4, -3, -2, -1, 0, +1, +2, +3, +4.

Для начала нужно вспомнить, что такое степень окисления.

Степень окисления – это условный заряд, возникающий на атоме, при допущении, что электронные пары смещаются полностью в сторону более электроотрицательного атома.

Поэтому степень окисления определяется числом смещенных электронных пар: если она смещается к данному атому, то он приобретает избыточный минус(-) заряд, если от атома, то он приобретает избыточный плюс(+) заряд. В принципе это вся теория, которую нужно знать, для определения степени окисления атома углерода.

Для определения степени окисления конкретного атому углерода в соединении нам нужно рассмотреть КАЖДУЮ его связь и посмотреть в какую сторону будет смещаться электронная пара и какой избыточный заряд (+ или -) будет от этого возникать на атоме углерода.

Разберем конкретные примеры:

У углерода три связи с водородом . Углерод и водород – кто более электроотрицателен? Углерод, значит, по этим трем связям электронная пара будет смещаться в сторону углерода. Углерод забирает у каждого водорода по одному отрицательному заряду: получается -3

Четвертая связь с хлором. Углерод и хлор – кто более электроотрицателен? Хлор, значит, по этой связи электронная пара будет смещаться в сторону хлора. У углерода появляется один положительный заряд +1.

Затем, нужно просто сложить: -3 + 1 = -2. Степень окисления этого атома углерода: -2.

Определим степень окисления каждого атома углерода:

У углерода три связи с водородом. Углерод и водород – кто более электроотрицателен? Углерод, значит, по этим трем связям электронная пара будет смещаться в сторону углерода. Углерод забирает у каждого водорода по одному отрицательному заряду: получается -3

И еще одна связь с другим углеродом. Углерод и другой углерод – их электроотрицательности равны, поэтому смещения электронной пары не происходит (связь не полярная).

У этого атома две связи с одним атомом кислорода, и еще одна связь с другим атомом кислорода (в составе группы OH). Более электроотрицательные атомы кислорода по трем связям оттягивают на себя электронную пару у углерода, у углерода появляется заряд +3.

Четвертой связью углерод связан с другим углеродом, как мы уже говорили, по этой связи электронная пара не смещается.

Двумя связями углерод связан с атомами водорода. Углерод, как более электроотрицательный оттягивает себе по одной паре электронов по каждой связи с водородом, приобретает заряд -2.

Двойной связью углерода связан с атомом кислорода. Более электроотрицательный кислород оттягивает на себя по каждой связи одну электронную пару. Вместе получается у углерода оттягивается две электронные пары. Углерод приобретает заряд +2.

Вместе получается +2 -2 = 0.

Определим степень окисления вот этого атома углерода:

Тройная связь с более электроотрицательным азотом – дает углероду заряд +3, по связи с углеродом смещения электронной пары не происходит.

Окисление перманганатом.

Что будет с перманаганатом?

Окислительно-восстановительная реакция с перманганатом может протекать в разных средах (нейтральная, щелочная, кислая). И от среды зависит, как именно будет протекать реакция, и какие при этом образуются продукты.

Поэтому может идти по трем направлениям:

Перманганат, являясь окислителем, восстанавливается. Вот продукты его восстановления:

  1. Кислая среда .

Среду подкисляют серной кислотой (H 2 SO 4). Марганец восстанавливается до степени окисления +2. И продукты восстановления будут:

KMnO 4 + H 2 SO 4 → MnSO 4 + K 2 SO 4 + H 2 O

  1. Щелочная среда .

Для создания щелочной среды добавляют довольно концентрированную щелочь (KOH). Марганец восстанавливается до степени окисления +6. Продукты восстановления

KMnO 4 + KOH → K 2 MnO 4 + H 2 O

  1. Нейтральная среда (и слабощелочная ).

В нейтральной среде кроме перманганата в реакцию так же вступает вода (которую мы пишем в левой части уравнения), марганец будет восстанавливаться до +4 (MnO 2), продукты восстановления будут:

KMnO 4 + H 2 O → MnO 2 + KOH

А в слабощелочной среде (в присутствии раствора KOH невысокой концентрации):

KMnO 4 + KOH → MnO 2 + H 2 O

Что будет с органикой?

Первое, что нужно усвоить – все начинается со спирта! Это начальная стадия окисления. Окислению подвергается тот углерод, к которому присоединена гидроксильная группа.

При окислении атом углерода «приобретает» связь с кислородом. Поэтому, когда записывают схему реакции окисления, над стрелкой пишут [O]:

Первичный спирт окисляется сначала до альдегида, потом до карбоновой кислоты:

Окисление вторичного спирта обрывается на второй стадии. Так как углерод находится посередке, образуется кетон, а не альдегид (атом углерода в кетонной группе уже физически не может образовать связь с гидроксильной группой):

Кетоны , третичные спирты и карбоновые кислоты дальше уже не окисляются:

Процесс окисления ступенчатый – пока есть куда окисляться и есть для этого все условия – реакция идет. Все заканчивается продуктом, который в данных условиях не окисляется: третичный спирт, кетон или кислота.

Стоит отметить стадии окисления метанола. Вначале он окисляется до соответствующего альдегида, затем до соответствующей кислоты:

Особенностью этого продукта (муравьиной кислоты) является то, что углерод в карбоксильной группе связан с водородом, и если приглядеться, то можно заметить, что это ни что иное как альдегидная группа:

А альдегидная группа, как мы выяснили ранее, окисляется дальше до карбоксильной:

Узнали полученное вещество? Его брутто-формула H 2 CO 3 . Это угольная кислота, которая распадается на углекислый газ и воду:

H 2 CO 3 → H 2 O + CO 2

Поэтому метанол, муравьиный альдегид и муравьиная кислота (за счет альдегидной группы) окисляются до углекислого газа.

Мягкое окисление.

Мягкое окисление – это окисление без сильного нагревания в нейтральной или слабощелочной среде (над реакцией пишут 0 ° или 20 °) .

Важно помнить, что спирты в мягких условиях не окисляются. Поэтому если они образуются, то на них окисление и останавливается. Какие вещества будут вступать в реакцию мягкого окисления?

  1. Содержащие двойную связь C=C (Реакция Вагнера).

При этом π-связь разрывается и на освободившиеся связи «садится» по гидроксильной группе. Получается двухатомный спирт:

Напишем реакцию мягкого окисления этилена (этена). Запишем исходные вещества и предскажем продукты. При этом H 2 O и КOH пока не пишем: они могут оказаться как в правой части уравнения, так и в левой. И сразу определяем степени окисления участвующих в ОВР веществ:

Составим электронный баланс (имеем ввиду, что восстановителя два – два атома углерода, окисляются они по-отдельности):

Расставим коэффициенты:

В конце надо дописать недостающие продукты (H 2 O и KOH). Справа не хватает калия – значит щелочь будет справа. Ставим коэффициент перед ней. Слева не хватает водорода, значит, вода слева. Ставим перед ней коэффициент:

Проделаем то же самое с пропиленом (пропеном):

Часто подсовывают циклоалкен. Пусть он вас не смутит. Это обычный углеводород с двойной связью:

Где бы не была эта двойная связь, окисление будет идти одинаково:

  1. Содержащие альдегидную группу .

Альдегидная группа более реакционноспособная (легче вступает в реакции), чем спиртовая. Поэтому альдегидная будет окисляться. До кислоты:

Рассмотрим на примере ацетальдегида (этаналя). Запишем реагенты и продукты и расставим степени окисления. Составим баланс и поставим коэффициенты перед восстановителем и окислителем:

В нейтральной среде и слабощелочной ход реакции будет немного разным.

В нейтральной среде, как мы помним при этом в левой части уравнения пишем воду, а в правой части уравнения щелочь (образуется в ходе реакции):

При этом в одной смеси оказываются рядом кислота и щелочь. Происходит нейтрализация.

Они не могут существовать рядом и реагируют, образуется соль:

При этом если мы посмотрим на коэффициенты в уравнении, то поймем, что кислоты 3 моля, а щелочи 2 моля. 2 моля щелочи может нейтрализовать только 2 моля кислоты (образуется 2 моля соли). А один моль кислоты остается. Поэтому конечное уравнение будет таким:

В слабощелочной среде щелочь в избытке – ее добавляют до реакции, поэтому нейтрализуется вся кислота:

Похожая ситуация возникает при окислении метаналя. Он, как мы помним, окисляется до углекислого газа:

Нужно иметь ввиду, что оксид углерода (IV) CO 2 кислотный. И будет реагировать с щелочью. И так как угольная кислота двухосновная, может образовываться как кислая соль, так и средняя. Это зависит от соотношения между щелочью и углекислым газом:

Если щелочь относится к углекислому газу как 2:1 , то будет средняя соль:

Или же щелочи может быть значительно больше (больше, чем в два раза). Если ее больше чем в два раза, то будет оставаться остаток щелочи:

3KOH + CO 2 → K 2 CO 3 + H 2 O + KOH

Такое будет возникать в щелочной среде (где щелочи избыток, так как она добавлена в реакционную смесь до реакции) или в нейтральной среде, когда щелочи образуется много.

Но если щелочь относится к углекислому газу как 1:1 , то будет кислая соль:

KOH + CO 2 → KHCO 3

Если углекислого газа больше, чем нужно, то он остается в избытке:

KOH + 2CO 2 → KHCO 3 + CO 2

Такое будет в нейтральной среде, если щелочи образуется мало.

Запишем исходные вещества, продукты, составим баланс, проставим степени окисления перед окислителем, восстановителем и продуктами, которые из них образуются:

В нейтральной среде справа будет образовываться щелочь (4KOH):

Теперь надо понять, что же будет образовываться при взаимодействии трех молей CO 2 и четырех молей щелочи.

3CO 2 + 4KOH → 3KHCO 3 + KOH

KHCO 3 + KOH → K 2 CO 3 + H 2 O

Поэтому получается вот так:

3CO 2 + 4KOH → 2KHCO 3 + K 2 CO 3 + H 2 O

Поэтому в правой части уравнения пишем два моля гидрокарбоната и один моль карбоната :

А в слабощелочной среде таких заморочек нет: из-за того, что щелочи избыток, будет образовываться средняя соль:

То же самое будет при окислении альдегида щавелевой кислоты:

Как и в предыдущем примере, образуется двухосновная кислота, и по уравнению должно получиться 4 моля щелочи (так как 4 моля перманганата).

В нейтральной среде опять-таки, всей щелочи не хватит на полную нейтрализацию всей кислоты.

Три моля щелочи уходит на образование кислой соли, один моль щелочи остается:

3HOOC–COOH + 4KOH → 3KOOC–COOH + KOH

И этот один моль щелочи уходит на взаимодействие с одним молем кислой соли:

KOOC–COOH + KOH → KOOC–COOK + H 2 O

Получается вот так:

3HOOC–COOH + 4KOH → 2KOOC–COOH + KOOC–COOK + H 2 O

Конечное уравнение:

В слабощелочной среде образуется средняя соль из-за избытка щелочи:

  1. Содержащие тройную связь C C .

Помните, что было при мягком окислении соединений с двойной связью? Если не помните, то пролистайте назад – вспомните.

π-связь рвется, на атомы углерода прикрепляется по гидроксильной группе. Здесь тот же принцип. Только стоит помнить, что в тройной связи есть две π-связи. Сначала это происходит по первой π-связи:

Потом по другой π-связи:

Структура, в которой у одного атома углерода две гидроксильные группы, крайне неустойчива. Когда в химии что-то не устойчиво, оно стремится, чтобы что-то «отвалилось». Отваливается вода, вот так:

Получается карбонильная группа.

Рассмотрим примеры:

Этин (ацетилен). Рассмотрим стадии окисления этого вещества:

Отщепление воды:

Как и в предыдущем примере, в одной реакционной смеси кислота и щелочь. Происходит нейтрализация – образуется соль. Как видно по коэффициенту перед перманганатом щелочи будет 8 молей, то есть вполне хватает для нейтрализации кислоты. Конечное уравнение:

Рассмотрим окисление бутина-2:

Отщепление воды:

Здесь кислоты не образуется, поэтому морочиться над нейтрализацией не надо.

Уравнение реакции:

Эти различия (между окислением углерода с краю и посередине цепи) ярко демонстрируются на примере пентина:

Отщепление воды:

Получается вещество интересного строения:

Альдегидная группа продолжает окисляться:

Запишем исходные вещества, продукты, определим степени окисления, составим баланс, проставим коэффициенты перед окислителем и восстановителем:

Щелочи должно образовываться 2 моля (так как коэффициент перед перманганатом 2), следовательно, вся кислота нейтрализуется:

Жесткое окисление .

Жесткое окисление – это окисление в кислой , сильнощелочной среде. А также, в нейтральной (или слабощелочной), но при нагревании .

В кислой среде тоже иногда нагревают. Но чтобы жесткое окисление пошло не в кислой среде, нагревание – обязательное условие.

Какие вещества будут подвергаться жесткому окислению? (Вначале разберем только в кислой среде – а потом дополним нюансами, которые возникают при окислении в сильнощелочной и нейтральной или слабощелочной (при нагревании) среде).

При жестком окислении процесс идет по максимуму. Пока есть, что окисляться – окисление идет.

  1. Спирты. Альдегиды .

Рассмотрим окисление этанола. Поступенчато он окисляется до кислоты:

Записываем уравнение. Записываем исходные вещества, продукты ОВР, проставляем степени окисления, составляем баланс. Уравниваем реакцию:

Если реакцию проводить при температуре кипения альдегида, когда он будет образовываться, то будет испаряться (улетать) из реакционной смеси, не успевая окисляться дальше. Того же эффекта можно добиться в очень щадящих условиях (слабое нагревание). В этом случае в качестве продукта пишем альдегид:

Рассмотрим окисление вторичного спирта на примере пропанола-2. Как уже было сказано, окисление обрывается на втором этапе (образование карбонильного соединения). Так как образуется кетон, который не окисляется. Уравнение реакции:

Окисление альдегидов рассмотрим на примете этаналя. Он тоже окисляется до кислоты:

Уравнение реакции:

Метаналь и метанол, как было сказано ранее, окисляются до углекислого газа:

Метаналь:

  1. Содержащие кратные связи .

При этом происходит разрыв цепи по кратной связи. И атомы, которые образовывали ее подвергаются окислению (приобретают связь с кислородом). Окисляются насколько это возможно.

При разрыве двойной связи из обрывков образуются карбонильные соединения (в схеме ниже: из одного обрывка – альдегид, из другого – кетон)

Разберем окисление пентена-2:

Окисление «обрывков»:

Получается, что образуется две кислоты. Запишем исходные вещества и продукты. Определим степени окисления у атомов, которые ее меняют, составим баланс, уравняем реакцию:

Составляя электронный баланс, имеем ввиду, что восстановителя два – два атома углерода, окисляются они по-отдельности:

Не всегда будет образовываться кислота. Разберем, например, окисление 2-метилбутена:

Уравнение реакции:

Абсолютно тот же самый принцип при окислении соединений с тройной связью (только окисление идет сразу с образованием кислоты, без промежуточного образования альдегида):

Уравнение реакции:

Когда кратная связь расположена ровно посередине, то получается не два продукта, а один. Так как «обрывки» одинаковые и окисляются они до одинаковых продуктов:

Уравнение реакции:

  1. Дважды коронованная кислота .

Есть одна кислота, у которой карбоксильные группы (короны) соединены друг с другом:

Это щавелевая кислота. Две короны рядом трудно уживаются. Она конечно устойчива в обычных условиях. Но из-за того, что в ней две карбоксильные группы соединены друг с другом, она менее устойчивая, чем другие карбоновые кислоты.

И поэтому при особо жестких условиях она может быть окислена. Происходит разрыв связи между «двумя коронами»:

Уравнение реакции:

  1. Гомологи бензола (и их производные) .

Сам бензол не окисляется, из-за того, что ароматичность делает эту структуру очень устойчивой

А вот его гомологи окисляются. При этом тоже происходит разрыв цепи, главное знать где именно. Действуют некоторые принципы:

  1. Бензольное кольцо само не разрушается, и остается целым до конца, разрыв связи происходит в радикале.
  2. Окисляется атом, непосредственно связанный с бензольным кольцом. Если после него углеродная цепь в радикале продолжается – то разрыв будет после него.

Разберем окисление метилбензола. Там окисляется один атом углерода в радикале:

Уравнение реакции:

Разберем окисление изобутилбензола:

Уравнение реакции:

Разберем окисление втор-бутилбензола:

Уравнение реакции:

При окислении гомологов бензола (и производных гомологов) с несколькими радикалами, образуются двух- трех- и более основные ароматические кислоты. Например, окисление 1,2-диметилбензола:

Производные гомологов бензола (в которых у бензольного кольца есть не углеводородные радикалы), окисляются так же. Другая функциональная группа у бензольного кольца не мешает:

Промежуточный итог. Алгоритм «как записать реакцию жесткого окисления перманганатом в кислой среде»:

  1. Записать исходные вещества (органика + KMnO 4 + H 2 SO 4).
  2. Записать продукты окисления органики (окисляться будут соединения содержащие спиртовую, альдегидную группы, кратные связи, а также гомологи бензола).
  3. Записать продукт восстановления перманганата (MnSO 4 + K 2 SO 4 + H 2 O).
  4. Определить степени окисления у участников ОВР. Составить баланс. Проставить коэффициенты у окислителя и восстановителя, а также у веществ, которые из них образуются.
  5. Затем рекомендовано посчитать сколько сульфат-анионов в правой части уравнения, в соответствии с этим поставить коэффициент перед серной кислотой слева.
  6. В конце поставить коэффициент перед водой.

Жесткое окисление в сильнощелочной среде и нейтральной или слабощелочной (при нагревании) среде .

Эти реакции встречаются гораздо реже. Можно сказать, что такие реакции – это экзотика. И как положено любым экзотическим реакциям, эти оказались самыми противоречивыми.

Жесткое окисление оно и в Африке жесткое, поэтому органика окисляется так же, как и в кислой среде.

Отдельно реакции для каждого класса разбирать не будем, так как общий принцип уже изложен ранее. Разберем только нюансы.

Сильнощелочная среда :

В сильнощелочной среде перманганат восстанавливается до степени окисления +6 (манганат калия):

KMnO 4 + KOH → K 2 MnO 4 .

В сильнощелочной среде щелочи всегда избыток, поэтому будет проходить полная нейтрализация: если образуется углекислый газ – будет карбонат, если образуется кислота – будет соль (если кислота многоосновная – средняя соль).

Например, окисление пропена:

Окисление этилбензола:

Слабощелочная или нейтральная среда при нагревании :

Здесь также необходимо всегда учитывать возможность нейтрализации.

Если окисление протекает в нейтральной среде и образуется кислотное соединение (кислота или углекислый газ), то образующаяся щелочь будет нейтрализовать это кислотное соединение. Но не всегда щелочи хватит на полную нейтрализацию кислоты.

При окислении альдегидов, например, ее не хватает (окисление будет протекать так же, как и в мягких условиях – температура просто ускорит реакцию). Поэтому образуется и соль, и кислота (оставшаяся грубо говоря в избытке).

Мы это обсуждали, когда разбирали мягкое окисление альдегидов.

Поэтому если у вас образуется кислота в нейтральной среде, нужно внимательно посмотреть хватит ли ее на нейтрализацию всей кислоты. Особое внимание нужно уделить нейтрализации многоосновных кислот.

В слабощелочной среде из-за достаточного количества щелочи образуются только средние соли, так, как щелочи избыток.

Как правило, щелочи при окислении в нейтральной среде вполне хватает. И уравнение реакции что в нейтральной, что в слабощелочной среде будут одинаковы.

Для примера разберем окисление этилбензола:

Щелочи вполне хватает на полную нейтрализацию полученных кислотных соединений, даже лишнего останется:

Расходуется 3 моля щелочи – 1 остается.

Конечное уравнение:

Эта реакция в нейтральной и слабощелочной среде будет идти одинаково (в слабощелочной среде слева щелочи нет, но это не значит, что ее нет, просто она в реакцию не вступает).

Окислительно-восстановительные реакции с участием дихромата (бихромата) калия.

Бихромат не имеет такого большого разнообразия реакций окисления органики в ЕГЭ.

Окисление бихроматом проводится как правило только в кислой среде. При это хром восстанавливается до +3. Продукты восстановления:

Окисление будет жестким. Реакция будет очень похожа на окисление перманганатом. Окисляться будут те же вещества, что окисляются перманганатом в кислой среде, образовываться будут те же продукты.

Разберем некоторые реакции.

Рассмотрим окисление спирта. Если проводить окисление при температуре кипения альдегида, то он будет уходить их реакционной смеси, не подвергаясь окислению:

В противном случае, спирт может быть напрямую окислен до кислоты.

Альдегид, полученный в ходе предыдущей реакции, можно «поймать», и заставить его окисляться до кислоты:

Окисление циклогексанола. Циклогексанол является вторичным спиртом, поэтому образуется кетон:

Если тяжело определить степени окисления атомов углерода по такой формуле, на черновике можно расписать:

Уравнение реакции:

Рассмотрим окисление циклопентена.

Двойная связь рвется (цикл размыкается), атомы, которые ее образовывали окисляются до максимума (в данном случае, до карбоксильной группы):

Некоторые особенности окисления в ЕГЭ, с которыми мы не совсем согласны.

Те «правила», принципы и реакции, которые будут рассмотрены в этом разделе, мы считаем не совсем корректными. Они противоречат не только реальному положению дел (химии как науке), но и внутренней логике школьной программы и ЕГЭ в частности.

Но тем не менее, мы вынуждены дать этот материал именно в том виде, который требует ЕГЭ.

Речь пойдет именно о ЖЕСТКОМ окислении.

Помните, как окисляются гомологи бензола и их произсодные в жестких условиях? Радикалы все обрываются – образуются карбоксильные группы. Обрывки подвергаются окислению уже «самостоятельно»:

Так вот, если вдруг радикале появляется гидроксильная группа, или кратная связь, нужно забыть, что там есть бензольное кольцо. Реакция пойдет ТОЛЬКО по этой функциональной группе (или кратной связи).

Функциональная группа и кратная связь главнее бензольного кольца.

Разберем окисление каждого вещества:

Первое вещество:

Нужно не обращать внимание на то, что есть бензольное кольцо. С точки зрения ЕГЭ – это всего лишь вторичный спирт. Вторичные спирты окисляются до кетонов, а кетоны далее не окисляются:

Пусть это вещество у нас будет окисляться бихроматом:

Второе вещество:

Это вещество окисляется, просто как соединение с двойной связью (на бензольное кольцо не обращаем внимание):

Пусть оно будет окисляться в нейтральном перманганате при нагревании:

Образовавшейся щелочи хватает на полную нейтрализацию углекислого газа:

2KOH + CO 2 → K 2 CO 3 + H 2 O

Итоговое уравнение:

Окисление третьего вещества:

Пусть окисление будет протекать перманганатом калия в кислой среде:

Окисление четвертого вещества:

Оно пусть окисляется в сильнощелочной среде. Уравнение реакции будет:

Ну и напоследок, вот так окисляется винилбензол:

А окисляется он до бензойной кислоты, нужно иметь ввиду, что по логике ЕГЭ он так окисляется не потому, что он – производное бензола. А потому, что он содержит двойную связь.

Заключение .

Это все, что нужно знать об окислительно-восстановительных реакциях с участием перманганата и бихромата в органике.

Не удивляйтесь если, некоторые моменты изложенные в данной статье, вы слышите впервые. Как уже было сказано, тема эта очень обширная и противоречивая. И несмотря на это почему-то ей уделяется крайне мало внимания.

Как вы, возможно, убедились, двумя-тремя реакциями не объяснить всех закономерностей этих реакций. Здесь нужен комплексный подход и подробное объяснения всех моментов. К сожалению в учебниках и на интернет ресурсах тема раскрыта не полностью, либо не раскрыта совсем.

Я постарался устранить эти недоработки и недочеты и рассмотреть эту тему целиком, а не частично. Надеюсь, мне это удалось.

Благодарю Вас за внимание, всего Вам хорошего! Успехов в освоении химической науки и сдаче экзаменов!

Выбрать в молекуле главную углеродную цепь. Во-первых, она должна быть самой длинной. Во-вторых, если имеются две или более одинаковые по длине цепи, то из них выбирается наиболее разветвленная. Например, в молекуле есть 2 цепи с одинаковым числом (7) атомов С (выделены цветом):

В случае (а) цепь имеет 1 заместитель, а в (б) – 2. Поэтому следует выбрать вариант (б).

1.Пронумеровать атомы углерода в главной цепи так, чтобы атомы С, связанные с заместителями, получили возможно меньшие номера. Поэтому нумерацию начинают с ближайшего к ответвлению конца цепи. Например:

    Назвать все радикалы (заместители), указав впереди цифры, обозначающие их местоположение в главной цепи. Если есть несколько одинаковых заместителей, то для каждого из них через запятую записывается цифра (местоположение), а их количество указывается приставками ди -, три -, тетра -, пента - и т.д. (например, 2,2-диметил или2,3,3,5-тетраметил ).

    Названия всех заместителей расположить в алфавитном порядке (так установлено последними правилами ИЮПАК).

    Назвать главную цепь углеродных атомов, т.е. соответствующий нормальный алкан.

Таким образом, в названии разветвленного алкана корень+суффикс – название нормального алкана (греч. числительное+суффикс "ан"), приставки – цифры и названия углеводородных радикалов. Пример построения названия:

Хим. Св-ва алканов Крекинг алканов. Крекинг – процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью. Изомеризация алканов Алканы нормального строения под влиянием катализаторов и при нагревании способны превращаться в разветвленные алканы без изменения состава молекул, т.е. вступать в реакции изомеpизации. В этих pеакциях участвуют алканы, молекулы которых содержат не менее 4-х углеродных атомов.Например, изомеризация н-пентана в изопентан (2-метилбутан) происходит при 100С в присутствии катализатора хлорида алюминия:

Исходное вещество и продукт реакции изомеризации имеют одинаковые молекулярные формулы и являются структурными изомерами (изомерия углеродного скелета).

Дегидрирование алканов

При нагревании алканов в присутствии катализаторов (Pt, Pd, Ni, Fe, Cr 2 O 3 , Fe 2 O 3 , ZnO) происходит их каталитическое дегидрирование – отщепления атомов водорода за счет разрыва связей С-Н.

Строение продуктов дегидрирования зависит от условий реакции и длины основной цепи в молекуле исходного алкана.

1.Низшие алканы, содержащие в цепи от 2-х до 4-х атомов углерода, при нагревании над Ni-катализатором отщепляют водород от соседних углеродных атомов и превращаются в алкены :

Наряду с бутеном-2 в этой реакции образуется бутен-1 CH 2 =CH-CH 2 -CH 3 . В присутствии катализатора Cr 2 O 3 /Al 2 O 3 при 450-650 С из н -бутана получают также бутадиен-1,3 CH 2 =CH-CH=CH 2 .

2. Алканы, содержащие в основной цепи больше 4-х атомов углерода, используются для получения циклических соединений. При этом происходит дегидроциклизация – реакция дегидрирования, которая приводит к замыканию цепи в устойчивый цикл.

Если основная цепь молекулы алкана содержит 5 (но не более) атомов углерода (н -пентан и его алкильные производные), то при нагревании над Pt-катализатором атомы водорода отщепляются от концевых атомов углеродной цепи, и образуется пятичленный цикл (циклопентан или его производные):

    Алканы с основной цепью в 6 и более атомов углерода также вступают в реакцию дегидроциклизации, но всегда образуют 6-членный цикл (циклогексан и его производные). В условиях реакции этот цикл подвергается дальнейшему дегидрированию и превращается в энергетически более устойчивый бензольный цикл ароматического углеводорода (арена). Например:

Эти реакции лежат в основе процесса риформинга – переработки нефтепродуктов с целью получения аренов (ароматизация предельных углеводородов) и водорода. Превращение н- алканов в арены ведет к улучшению детонационной стойкости бензина.

Описание презентации ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕ ЛЬНЫЕ РЕАКЦИИ С УЧАСТИЕМ ОРГАНИЧЕСКИХ ВЕЩЕСТВ по слайдам

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕ ЛЬНЫЕ РЕАКЦИИ С УЧАСТИЕМ ОРГАНИЧЕСКИХ ВЕЩЕСТВ Кочулева Л. Р. , учитель химии МОБУ «Лицей № 9» г. Оренбурга

В органической химии окисление определяют как процесс, при котором в результате превращения функциональной группы соединение переходит из одной категории в более высокую: алкен спирт альдегид (кетон) карбоновая кислота. Большинство реакций окисления включает введение в молекулу атома кислорода или образование двойной связи с уже имеющимся атомом кислорода за счет потери атомов водорода.

ОКИСЛИТЕЛИ Для окисления органических веществ обычно используют соединения переходных металлов, кислород, озон, пероксиды и соединения серы, селена, иода, азота и другие. Из окислителей на основе переходных металлов преимущественно применяют соединения хрома (VI) и марганца (VII), (VI) и (IV). Наиболее распространенные соединения хрома (VI) – это раствор дихромата калия K 2 Cr 2 O 7 в серной кислоте, раствор триоксида хрома Cr. O 3 в разбавленной серной кислоте.

ОКИСЛИТЕЛИ При окислении органических веществ хром (VI) в любой среде восстанавливается до хрома (III), однако, окисление в щелочной среде в органической химии не находит практического применения. Перманганат калия KMn. O 4 в разных средах проявляет различные окислительные свойства, при этом сила окислителя увеличивается в кислой среде. Манганат калия K 2 Mn. O 4 и оксид марганца (IV) Mn. O 2 проявляют окислительные свойства только в кислой среде

АЛКЕНЫ В зависимости от природы окислителя и условий реакции образуются различные продукты: двухатомные спирты, альдегиды, кетоны, карбоновые кислоты При окислении водным растворoм KMn. O 4 при комнатной температуре происходит разрыв π-связи и образуются двухатомные спирты (реакция Вагнера): Обесцвечивание раствора перманганата калия — качественная реакция на кратную связь

АЛКЕНЫ Окисление алкенов концентрированным раствором перманганата калия KMn. O 4 или дихромата калия K 2 Cr 2 O 7 в кислой среде сопровождается разрывом не только π-, но и σ-связи Продукты реакции – карбоновые кислоты и кетоны (в зависимости от строения алкена) С помощью этой реакции по продуктам окисления алкена можно определить положение двойной связи в его молекуле:

АЛКЕНЫ 5 СН 3 –СН=СН-СН 3 +8 KMn. O 4 +12 H 2 SO 4 → 10 CH 3 COOH +8 Mn. SO 4+4 K 2 SO 4+12 H 2 O 5 СН 3 –СН=СН-CH 2 -СН 3 +8 KMn. O 4 +12 H 2 SO 4 → 5 CH 3 COOH +5 CH 3 CH 2 COOH +8 Mn. SO 4 +4 K 2 SO 4 +12 H 2 O CH 3 -CH 2 -CH=CH 2 +2 KMn. O 4 +3 H 2 SO 4 → CH 3 CH 2 COOH +CO 2 +2 Mn. SO 4 +K 2 SO 4 +4 H 2 O

АЛКЕНЫ Алкены разветвленного строения, содержащие углеводородный радикал у атома углерода, соединенного двойной связью, при окислении образуют смесь карбоновой кислоты и кетона:

АЛКЕНЫ 5 CH 3 -CH=C-CH 3 + 6 KMn. O 4 +9 H 2 SO 4 → │ CH 3 5 CH 3 COOH + 5 O=C-CH 3 + 6 Mn. SO 4 + 3 K 2 SO 4+ │ CH 3 9 H 2 O

АЛКЕНЫ Алкены разветвленного строения, содержащие углеводородные радикалы у обоих атомов углерода, соединенных двойной связью, при окислении образуют смесь кетонов:

АЛКЕНЫ 5 CH 3 -C=C-CH 3 + 4 KMn. O 4 +6 H 2 SO 4 → │ │ CH 3 10 O=C-CH 3 + 4 Mn. SO 4 + 2 K 2 SO 4+6 H 2 O │ CH

АЛКЕНЫ В результате каталитического окисления алкенов кислородом воздуха получают эпоксиды: В жестких условиях при сжигании на воздухе алкены, как и другие углеводороды, сгорают с образованием углекислого газа и воды: С 2 Н 4 + 3 О 2 → 2 СО 2 + 2 Н 2 О

АЛКАДИЕНЫ CH 2 =CH−CH=CH 2 В окисляемой молекуле две концевых двойных связи, следовательно, образуются две молекулы углекислого газа. Углеродный скелет не разветвленный, поэтому при окислении 2 -го и 3 -го углеродных атомов образуются карбоксильные группы CH 2 =CH−CH=CH 2 + 4 KMn. O 4 + 6 H 2 SO 4 → 2 СО 2 + НСОО−СООН + 4 Mn. SO 4 +2 K 2 SO 4 + 8 Н 2 О

АЛКИНЫ Алкины легко окисляются перманганатом калия и дихроматом калия по месту кратной связи При действии на алкины водным раствором KMn. O 4 происходит его обесцвечивание (качественная реакция на кратную связь) При взаимодействии ацетилена с водным раствором перманганата калия образуется соль щавелевой кислоты (оксалат калия):

АЛКИНЫ Ацетилен может быть окислен перманганатом калия в нейтральной среде до оксалата калия: 3 CH≡CH +8 KMn. O 4 → 3 KOOC – COOK +8 Mn. O 2 +2 КОН +2 Н 2 О В кислотной среде окисление идет до щавелевой кислоты или углекислого газа: 5 CH≡CH +8 KMn. O 4 +12 H 2 SO 4 → 5 HOOC – COOH +8 Mn. SO 4 +4 К 2 SO 4 +12 Н 2 О CH≡CH + 2 KMn. O 4 +3 H 2 SO 4 =2 CO 2 + 2 Mn. SO 4 + 4 H 2 O + K 2 SO

АЛКИНЫ Окисление перманганатам калия в кислой среде при нагревании сопровождается разрывом углеродной цепи по месту тройной связи и приводит к образованию кислот: Окисление алкинов, содержащих тройную связь у крайнего атома углерода, сопровождается в этих условиях образованием карбоновой кислоты и СО 2:

АЛКИНЫ CH 3 C≡CCH 2 CH 3 + K 2 Cr 2 O 7 + 4 H 2 SO 4→CH 3 COOH+CH 3 CH 2 COOH + Cr 2(SO 4)3+K 2 SO 4+3 H 2 O 3 CH 3 C≡CH+4 K 2 Cr 2 O 7 +16 H 2 SO 4 →CH 3 COOH+3 CO 2++ 4 Cr 2(SO 4)3 + 4 K 2 SO 4 +16 H 2 O CH 3 C≡CH+8 KMn. O 4+11 KOH →CH 3 COOK +K 2 CO 3 + 8 K 2 Mn. O 4 +6 H 2 O

ЦИКЛОАЛКАНЫ И ЦИКЛОАЛКЕНЫ При действии сильных окислителей (KMn. O 4 , K 2 Cr 2 O 7 и др.) циклоалканы и циклоалкены образуют двухосновные карбоновые кислоты с тем же числом атомов углерода: 5 C 6 H 12 + 8 KMn. O 4 + 12 H 2 SO 4 → 5 HOOC(CH 2) 4 COOH + 4 K 2 SO 4 + 8 Mn. SO 4 +12 H 2 O

АРЕНЫ Бензол Устойчив к окислителям при комнатной температуре Не реагирует с водными растворами перманганата калия, дихромата калия и других окислителей Можно окислить озоном с образованием диальдегида:

АРЕНЫ Гомологи бензола Окисляются относительно легко. Окислению подвергается боковая цепь, у толуола – метильная группа. Мягкие окислители (Mn. O 2) окисляют метильную группу до альдегидной группы: C 6 H 5 CH 3+2 Mn. O 2+H 2 SO 4→C 6 H 5 CHO+2 Mn. SO 4+3 H 2 O

АРЕНЫ Более сильные окислители – KMn. O 4 в кислой среде или хромовая смесь при нагревании окисляют метильную группу до карбоксильной: В нейтральной или слабощелочной среде образуется не сама бензойная кислота, а ее соль — бензоат калия:

АРЕНЫ В кислой среде 5 С 6 Н 5 СН 3 +6 КMn. O 4 +9 H 2 SO 4 → 5 С 6 Н 5 СООН+6 Mn. SO 4 +3 K 2 SO 4 + 14 H 2 O В нейтральной среде C 6 H 5 CH 3 +2 KMn. O 4 = C 6 H 5 COOK + 2 Mn. O 2 + KOH + H 2 O В щелочной среде C 6 H 5 CH 2 CH 3 + 4 KMn. O 4 = C 6 H 5 COOK + K 2 CO 3 + 2 H 2 O + 4 Mn. O 2 + KOH

АРЕНЫ Под действием сильных окислителей (KMn. O 4 в кислой среде или хромовая смесь) боковые цепи окисляются независимо от строения: атом углерода, непосредственно связанный с бензольным ядром, до карбоксильной группы, остальные атомы углерода в боковой цепи — до СО 2 Окисление любого гомолога бензола с одной боковой цепью под действием KMn. O 4 в кислой среде или хромовой смеси приводит к образованию бензойной кислоты:

АРЕНЫ Гомологи бензола, содержащие несколько боковых цепей, при окислении образуют соответствующие многоосновные ароматические кислоты:

АРЕНЫ В нейтральной или слабощелочной среде при окислении перманганатом калия образуются соль карбоновой кислоты и карбонат калия:

АРЕНЫ 5 C 6 H 5 -C 2 H 5 + 12 KMn. O 4 + 18 H 2 SO 4 -> 5 C 6 H 5 -COOH + 5 CO 2 + 12 Mn. SO 4 + 6 K 2 SO 4 + 28 H 2 O C 6 H 5 -C 2 H 5 +4 KMn. O 4→ C 6 H 5 -COOК +К 2 СО 3 +КОН +4 Mn. O 2 +2 H 2 O 5 C 6 H 5 -CH(CH 3)2 + 18 KMn. O 4 + 27 H 2 SO 4 —-> 5 C 6 H 5 -COOH + 10 CO 2 + 18 Mn. SO 4 + 9 K 2 SO 4 + 42 H 2 O 5 CH 3 -C 6 H 4 -CH 3 +12 KMn. O 4 +18 H 2 SO 4 → 5 C 6 H 4(COOН)2 +12 Mn. SO 4 +6 K 2 SO 4 + 28 H 2 O CH 3 -C 6 H 4 -CH 3 + 4 KMn. O 4 → C 6 H 4(COOK)2 +4 Mn. O 2 +2 KOH+2 H 2 O

СТИРОЛ Окисление стирола (винилбензола) раствором перманганата калия в кислой и нейтральной среде: 3 C 6 H 5 −CH═CH 2 + 2 KMn. O 4 + 4 H 2 O → 3 C 6 H 5 −CH−CH 2 + 2 Mn. O 2 + 2 KOH ı ı OH OH Окисление сильным окислителем — перманганатом калия в кислой среде — приводит к полному разрыву двойной связи и об разованию углекислого газа и бензойной кислоты, раствор при этом обесцвечивается. C 6 H 5 −CH═CH 2 + 2 KMn. O 4 + 3 H 2 SO 4 → C 6 H 5 −COOH + CO 2 + K 2 SO 4 + 2 Mn. SO 4 +4 H 2 O

СПИРТЫ Наиболее подходящие окислители для первичных и вторичных спиртов: KMn. O 4 , хромовая смесь. Первичные спирты, кроме метанола, окисляются до альдегидов или карбоновых кислот:

СПИРТЫ Метанол окисляется до СО 2: Этанол под действием Cl 2 окисляется до уксусного альдегида: Вторичные спирты окисляются до кетонов:

СПИРТЫ Двухатомный спирт, этиленгликоль HOCH 2 –CH 2 OH, при нагревании в кислой среде с раствором KMn. O 4 или K 2 Cr 2 O 7 легко окисляется до щавелевой кислоты, а в нейтральной – до оксалата калия. 5 СН 2 (ОН) – СН 2 (ОН) + 8 КMn. O 4 +12 H 2 SO 4 → 5 HOOC – COOH +8 Mn. SO 4 +4 К 2 SO 4 +22 Н 2 О 3 СН 2 (ОН) – СН 2 (ОН) + 8 КMn. O 4 → 3 KOOC – COOK +8 Mn. O 2 +2 КОН +8 Н 2 О

ФЕНОЛЫ Окисляются легко благодаря наличию гидроксогруппы, соединенной с бензольным кольцом Фенол окисляется пероксидом водорода в присутствии катализатора до двухатомного фенола пирокатехина, при окислении хромовой смесью – до пара -бензохинона:

АЛЬДЕГИДЫ И КЕТОНЫ Альдегиды окисляются легко, при этом альдегидная группа окисляется до карбоксильной: 3 CH 3 СHO + 2 KMn. O 4 + 3 H 2 O → 2 CH 3 COOK+ CH 3 COOH+ 2 Mn. O 2 + H 2 O 3 CH 3 CH=O + K 2 Cr 2 O 7 + 4 H 2 SO 4 = 3 CH 3 COOH + Cr 2 (SO 4) 3 + 7 H 2 O Метаналь окисляется до CО 2:

АЛЬДЕГИДЫ И КЕТОНЫ Качественные реакции на альдегиды: окисление гидроксидом меди(II) реакция «серебряного зеркала» Соль, а не кислота!

АЛЬДЕГИДЫ И КЕТОНЫ Кетоны окисляются с трудом, слабые окислители на них не действуют Под действием сильных окислителей происходит разрыв С — С связей по обе стороны карбонильной группы с образованием смеси кислот (или кетонов) с меньшим числом атомов углерода, чем в исходном соединении:

АЛЬДЕГИДЫ И КЕТОНЫ В случае несимметричного строения кетона окисление преимущественно осуществляется со стороны менее гидрированного атома углерода при карбонильной группе (правило Попова – Вагнера) По продуктам окисления кетона можно установить его строение:

МУРАВЬИНАЯ КИСЛОТА Среди предельных одноосновных кислот легко окисляется только муравьиная кислота. Это связано с тем, что в муравьиной кислоте кроме карбоксильной группы можно выделить и альдегидную группу. 5 НСООН + 2 KMn. O 4 + 3 H 2 SO 4 → 2 Mn. SO 4 + K 2 SO 4 + 5 СО 2 + 8 Н 2 О Муравьиная кислота реагирует с аммиачным раствором оксида серебра и гидроксидом меди (II) HCOOH + 2OH → 2 Ag + (NH 4)2 CO 3 + 2 NH 3 + H 2 O HCOOH + 2 Cu(OH) 2 CO 2 + Cu 2 O↓+ 3 H 2 O Кроме того, муравьиная кислота окисляется хлором: НСООН + Сl 2 → СО 2 + 2 HCl

НЕПРЕДЕЛЬНЫЕ КАРБОНОВЫЕ КИСЛОТЫ Легко окисляются водным раствором KMn. O 4 в слабощелочной среде с образованием дигидрооксикислот и их солей: В кислой среде происходит разрыв углеродного скелета по месту двойной связи С=С с образованием смеси кислот:

ЩАВЕЛЕВАЯ КИСЛОТА Легко окисляется под действием KMn. O 4 в кислой среде при нагревании до CО 2 (метод перманганатометрии): При нагревании подвергается декарбоксилированию (реакция диспропорционирования): В присутствии концентрированной H 2 SO 4 при нагревании щавелевая кислота и ее соли (оксалаты) диспропорционируют:

Записываем уравнения реакций: 1) CH 3 CH 2 CH 2 CH 3 2) 3) 4) 5) 16, 32 % (36, 68 %, 23, 82 %)Pt, to X 3 X 2 Pt, to. KMn. O 4 KOH X 4 гептан KOH, to бензол. X 1 Fe, HCl. HNO 3 H 2 SO 4 CH 3 + 4 H 2 CH 3 + 6 KMn. O 4 + 7 KOHCOOK + 6 K 2 Mn. O 4 + 5 H 2 O COOK + KOH+ K 2 CO 3 to NO 2 + H 2 O+ HNO 3 H 2 SO 4 N H 3 C l + 3 F e C l 2 + 2 H 2 ON O 2 + 3 F e + 7 H C l