Указать уравнение касательной плоскости к поверхности онлайн. Как найти уравнения касательной плоскости и нормалик поверхности в заданной точке? Касательная плоскость и нормаль к поверхности

Определение 1 : Касательной плоскостью к поверхности в данной точке P (x 0 , y 0 , z 0) называется плоскость, проходящая через точку Р и содержащая в себе все касательные, построенные в точке Р ко всевозможным кривым на этой поверхности, проходящим через точку Р.

Пусть поверхность s задана уравнением F (х , у , z ) = 0 и точка P (x 0 , y 0 , z 0) принадлежит этой поверхности. Выберем на поверхности какую-либо кривую L , проходящую через точку Р .

Пусть х = х (t ), у = у (t ), z = z (t ) - параметрические уравнения линии L .

Предположим, что: 1) функция F (х , у , z ) дифференцируема в точке Р и не все её частные производные в этой точке равны нулю; 2) функции х (t ), у (t ), z (t ) также дифференцируемы.

Поскольку кривая принадлежит поверхности s, то координаты любой точки этой кривой, будучи подставленными в уравнение поверхности, обратят его в тождество. Таким образом, справедливо тождественное равенство: F [x (t ), у (t ), z (t )]= 0.

Продифференцировав это тождество по переменной t , используя цепное правило, получим новое тождественное равенство, справедливое во всех точках кривой, в том числе и в точке P (x 0 , y 0 , z 0):

Пусть точке Р соответствует значение параметра t 0 , то есть x 0 = x (t 0), y 0 = y (t 0), z 0 = z (t 0). Тогда последнее соотношение, вычисленное в точке Р , примет вид

Данная формула представляет собой скалярное произведение двух векторов. Первый из них - постоянный вектор

не зависящий от выбора кривой на поверхности.

Второй вектор - касательный в точке Р к линии L , а значит, зависящий от выбора линии на поверхности, то есть является переменным вектором.

При введённых обозначениях равенство:

перепишем как.

Его смысл таков: скалярное произведение равно нулю, следовательно, векторы и перпендикулярны. Выбирая всевозможные кривые, проходящие через точку Р на поверхности s, мы будем иметь различные касательные векторы, построенные в точке Р к этим линиям; вектор же от этого выбора не зависит и будет перпендикулярен любому из них, то есть все касательные векторы расположены в одной плоскости, которая, по определению, является касательной к поверхности s, а точка Р в этом случае называется точкой касания. Вектор является направляющим вектором нормали к поверхности.

Определение 2: Нормалью к поверхности s в точке Р называется прямая, проходящая через точку Р и перпендикулярная к касательной плоскости, построенной в этой точке.

Мы доказали существование касательной плоскости, а, следовательно, и нормали к поверхности. Запишем их уравнения:

Уравнение касательной плоскости, построенной в точке P (x0, y0, z0) к поверхности s, заданной уравнением F(х, у, z) = 0;

Уравнение нормали, построенной в точке Р к поверхности s.

Пример: Найти уравнение поверхности, образованной вращением параболы:

z 2 = 2p (y +2)

вокруг оси оу, вычислить при условии, что точка М(3, 1, - 3) принадлежит поверхности. Найти уравнения нормали и касательной плоскости к поверхности в точке М.

Решение. Используя правило записи поверхности вращения, получим:

z 2 + x 2 = 2p (y +2) .

Подставив координаты точки М в это уравнение, вычислим значение параметра р: 9 + 9 = 2р(1 + 2) . Записываем окончательный вид поверхности вращения, проходящей через точку М:

z 2 + x 2 = 6 (y +2).

Теперь найдём уравнения нормали и касательной плоскости по формулам, для чего вычислим сначала частные производные функции:

F(x, y) = z 2 + x 2- 6 (y +2):

Тогда уравнение касательной плоскости примет вид 6(х - 3) - 6(y - 1) - 6(z + 3) = 0 или x - y - z - 5 = 0;

Уравнение нормальной плоскости

1.

4.

Касательная плоскость и нормаль к поверхности

Пусть дана некоторая поверхность, A — фиксированная точка поверхности и B — переменная точка поверхности,

(рис. 1).

Ненулевой вектор

n
называется нормальным вектором к поверхности в точке A , если


lim
B → A
j =
π
2
.

Точка поверхности F (x , y , z) = 0 называется обыкновенной , если в этой точке

  1. частные производные F " x , F " y , F " z непрерывны;
  2. (F " x )2 + (F " y )2 + (F " z )2 ≠ 0 .

При нарушении хотя бы одного из этих условий точка поверхности называется особой точкой поверхности .

Теорема 1. Если M (x 0 , y 0 , z 0 ) — обыкновенная точка поверхности F (x , y , z) = 0 , то вектор

n
= grad F (x 0 , y 0 , z 0 ) = F " x (x 0 , y 0 , z 0 )
i
+ F " y (x 0 , y 0 , z 0 )
j
+ F " z (x 0 , y 0 , z 0 )
k
(1)

является нормальным к этой поверхности в точке M (x 0 , y 0 , z 0 ) .

Доказательство приведено в книге И.М. Петрушко, Л.А. Кузнецова, В.И. Прохоренко, В.Ф. Сафонова ``Курс высшей математики: Интегральное исчисление. Функции нескольких переменных. Дифференциальные уравнения. М.: Изд-во МЭИ, 2002 (стр. 128).

Нормалью к поверхности в некоторой ее точке называется прямая, направляющий вектор которой является нормальным к поверхности в этой точке и которая проходит через эту точку.

Канонические уравнения нормали можно представить в виде

x − x 0
F " x (x 0 , y 0 , z 0 )
=
y − y 0
F " y (x 0 , y 0 , z 0 )
=
z − z 0
F " z (x 0 , y 0 , z 0 )
.
(2)

Касательной плоскостью к поверхности в некоторой точке называется плоскость, которая проходит через эту точку перпендикулярно нормали к поверхности в этой точке.

Из этого определения следует, что уравнение касательной плоскости имеет вид:

(3)

Если точка поверхности является особой, то в этой точке нормальный к поверхности вектор может не существовать, и, следовательно, поверхность может не иметь нормали и касательной плоскости.

Геометрический смысл полного дифференциала функции двух переменных

Пусть функция z = f (x , y) дифференцируема в точке a (x 0 , y 0 ) . Ее графиком является поверхность

f (x , y) − z = 0.

Положим z 0 = f (x 0 , y 0 ) . Тогда точка A (x 0 , y 0 , z 0 ) принадлежит поверхности.

Частные производные функции F (x , y , z) = f (x , y) − z суть

F " x = f " x , F " y = f " y , F " z = − 1

и в точке A (x 0 , y 0 , z 0 )

  1. они непрерывны;
  2. F "2 x + F "2 y + F "2 z = f "2 x + f "2 y + 1 ≠ 0 .

Следовательно, A — обыкновенная точка поверхности F (x , y , z) и в этой точке существует касательная плоскость к поверхности. Согласно (3), уравнение касательной плоскости имеет вид:

f " x (x 0 , y 0 ) (x − x 0 ) + f " y (x 0 , y 0 ) (y − y 0 ) − (z − z 0 ) = 0.

Вертикальное смещение точки на касательной плоскости при переходе из точки a (x 0 , y 0 ) в произвольную точку p (x , y) есть B Q (рис. 2). Соответствующее приращение аппликаты есть

(z − z 0 ) = f " x (x 0 , y 0 ) (x − x 0 ) + f " y (x 0 , y 0 ) (y − y 0 )

Здесь в правой части стоит дифференциалd z функции z = f (x , y) в точке a (x 0 , x 0 ). Следовательно,
d f (x 0 , y 0 ). есть приращение аппликаты точки плоскости касательной к графику функции f (x , y) в точке (x 0 , y 0 , z 0 = f (x 0 , y 0 )).

Из определения дифференциала следует, что расстояние между точкой P на графике функции и точкой Q на касательной плоскости есть бесконечно малая более высокого порядка, чем расстояние от точки p до точки a .

Графиком функции 2-х переменных z = f(x,y) является поверхность, проектирующаяся на плоскость XOY в область определения функции D.
Рассмотрим поверхность σ , заданную уравнением z = f(x,y) , где f(x,y) – дифференцируемая функция, и пусть M 0 (x 0 ,y 0 ,z 0) – фиксированная точка на поверхности σ , т.е. z 0 = f(x 0 ,y 0). Назначение . Онлайн-калькулятор предназначен для нахождения уравнения касательной плоскости и нормали к поверхности . Решение оформляется в формате Word . Если необходимо найти уравнение касательной к кривой (y = f(x)), то необходимо использовать данный сервис .

Правила ввода функций :

Правила ввода функций :

Касательной плоскостью к поверхности σ в её точке М 0 называется плоскость, в которой лежат касательные ко всем кривым, проведённым на поверхности σ через точку М 0 .
Уравнение касательной плоскости к поверхности, заданной уравнением z = f(x,y) , в точке M 0 (x 0 ,y 0 ,z 0) имеет вид:

z – z 0 = f’ x (x 0 ,y 0)(x – x 0) + f’ y (x 0 ,y 0)(y – y 0)


Вектор называется вектором нормали к поверхности σ в точке М 0 . Вектор нормали перпендикулярен касательной плоскости.
Нормалью к поверхности σ в точке М 0 называется прямая, проходящая через эту точку и имеющая направление вектора N.
Канонические уравнения нормали к поверхности, заданной уравнением z = f(x,y) , в точке M 0 (x 0 ,y 0 ,z 0), где z 0 = f(x 0 ,y 0), имеют вид:

Пример №1 . Поверхность задана уравнением x 3 +5y . Найти уравнение касательной плоскости к поверхности в точке M 0 (0;1).
Решение . Запишем уравнения касательной в общем виде: z - z 0 = f" x (x 0 ,y 0 ,z 0)(x - x 0) + f" y (x 0 ,y 0 ,z 0)(y - y 0)
По условию задачи x 0 = 0 , y 0 = 1 , тогда z 0 = 5
Найдем частные производные функции z = x^3+5*y:
f" x (x,y) = (x 3 +5 y)" x = 3 x 2
f" x (x,y) = (x 3 +5 y)" y = 5
В точке М 0 (0,1) значения частных производных:
f" x (0;1) = 0
f" y (0;1) = 5
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М 0: z - 5 = 0(x - 0) + 5(y - 1) или -5 y+z = 0

Пример №2 . Поверхность задана неявным образом y 2 -1/2*x 3 -8z. Найти уравнение касательной плоскости к поверхности в точке M 0 (1;0;1).
Решение . Находим частные производные функции . Поскольку функция задана в неявном виде, то производные ищем по формуле:

Для нашей функции:

Тогда:

В точке М 0 (1,0,1) значения частных производных:
f" x (1;0;1) = -3 / 16
f" y (1;0;1) = 0
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М 0: z - 1 = -3 / 16 (x - 1) + 0(y - 0) или 3 / 16 x+z- 19 / 16 = 0

Пример . Поверхность σ задана уравнением z = y/x + xy – 5x 3 . Найти уравнение касательной плоскости и нормали к поверхности σ в точке М 0 (x 0 , y 0 , z 0), принадлежащей ей, если x 0 = –1, y 0 = 2.
Найдем частные производные функции z = f (x , y ) = y/x + xy – 5x 3:
f x ’(x , y ) = (y/x + xy – 5x 3)’ x = – y/x 2 + y – 15x 2 ;
f y ’ (x , y ) = (y/x + xy – 5x 3)’ y = 1/x + x .
Точка М 0 (x 0 , y 0 , z 0) принадлежит поверхности σ , поэтому можно вычислить z 0 , подставив заданные x 0 = –1 и y 0 = 2 в уравнение поверхности:

z = y/x + xy – 5x 3

z 0 = 2/(-1) + (–1) 2 – 5 (–1) 3 = 1.
В точке М 0 (–1, 2, 1) значения частных производных:
f x ’(М 0) = –1/(-1) 2 + 2 – 15(–1) 2 = –15; f y ’(М 0) = 1/(-1) – 1 = –2.
Пользуясь формулой (5) получаем уравнение касательной плоскости к поверхности σ в точке М 0:
z – 1= –15(x + 1) – 2(y – 2) z – 1= –15x – 15 – 2y + 4 15x + 2y + z + 10 = 0.
Пользуясь формулой (6) получаем канонические уравнения нормали к поверхности σ в точке М 0: .
Ответы: уравнение касательной плоскости: 15x + 2y + z + 10 = 0; уравнения нормали: .

Пример №1 . Дана функция z=f(x,y) и две точки А(х 0 , y 0) и В(х 1 ,y 1). Требуется: 1) вычислить значение z 1 функции в точке В; 2) вычислить приближенное значение z 1 функции в точке В исходя из значения z 0 функции в точке А, заменив приращение функции при переходе от точки А к точке В дифференциалом; 3) составить уравнение касательной плоскости к поверхности z = f(x,y) в точке C(x 0 ,y 0 ,z 0).
Решение.
Запишем уравнения касательной в общем виде:
z - z 0 = f" x (x 0 ,y 0 ,z 0)(x - x 0) + f" y (x 0 ,y 0 ,z 0)(y - y 0)
По условию задачи x 0 = 1, y 0 = 2, тогда z 0 = 25
Найдем частные производные функции z = f(x,y)x^2+3*x*y*+y^2:
f" x (x,y) = (x 2 +3 x y +y 2)" x = 2 x+3 y 3
f" x (x,y) = (x 2 +3 x y +y 2)" y = 9 x y 2
В точке М 0 (1,2) значения частных производных:
f" x (1;2) = 26
f" y (1;2) = 36
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М 0:
z - 25 = 26(x - 1) + 36(y - 2)
или
-26 x-36 y+z+73 = 0

Пример №2 . Написать уравнения касательной плоскости и нормали к эллиптическому параболоиду z = 2x 2 + y 2 в точке (1;-1;3).

Рассмотрим геометрические приложения производной функции нескольких переменных. Пусть функция двух переменных задана неявно: . Эта функция в области своего определения изображается некоторой поверхностью (п. 5.1). Возьмем на данной поверхности произвольную точку , в которой все три частных производных , , существуют и непрерывны, причем хотя бы одна из них не равна нулю.

Точка с такими характеристиками называется обыкновенной точкой поверхности. Если хотя бы одно из указанных выше требований не выполняется, то точка называется особой точкой поверхности.

Через выбранную на поверхности точку можно провести множество кривых, к каждой из которых может быть проведена касательная.

Определение 5.8.1 . Плоскость, в которой расположены все касательные прямые к линиям на поверхности, проходящим через некоторую точку , называется касательной плоскостью к данной поверхности в точке .

Чтобы провести данную плоскость достаточно иметь две касательных прямых, то есть две кривых на поверхности. Это могут быть кривые, полученные в результате сечения данной поверхности плоскостями , (рис. 5.8.1).

Запишем уравнение касательной линии к кривой, лежащей на пересечении поверхности и плоскости . Поскольку данная кривая лежит в системе координат , то уравнение касательной к ней в точке , в соответствии с п. 2.7, имеет вид:

. (5.8.1)

Соответственно, уравнение касательной к кривой, лежащей на пересечении поверхности и плоскости , в системе координат в той же точке имеет вид:

. (5.8.2)

Воспользуемся выражением для производной неявно заданной функции (п. 5.7). Тогда , а . Подставляя эти производные в (5.8.1) и (5.8.2), получим, соответственно:

; (5.8.3)

. (5.8.4)

Поскольку полученные выражения не что иное, как уравнения прямых в канонической форме (п. 15), то из (5.8.3) получаем направляющий вектор , а из (5.8.4) – . Векторное произведение даст вектор, нормальный к данным касательным линиям, а, следовательно, и к касательной плоскости:

Отсюда следует, что уравнение касательной плоскости к поверхности в точке имеет вид (п. 14):



Определение 5.8.2 . Прямая, проведенная через точку поверхности перпендикулярно касательной плоскости в этой точке, называется нормалью к поверхности .

Так как направляющий вектор нормали к поверхности совпадает с нормалью к касательной плоскости , то уравнение нормали имеет вид:

.

Скалярное поле

Пусть в пространстве задана область , занимающая часть или все это пространство. Пусть каждой точке этой области по какому-то закону поставлена в соответствие некоторая скалярная величина (число).

Определение 5.9.1 . Область в пространстве, каждой точке которой ставится в соответствие по известному закону некоторая скалярная величина , называется скалярным полем .

Если с областью связана какая-то система координат, например, прямоугольная декартовая, то каждая точка приобретает свои координаты. В этом случае скалярная величина становится функцией координат: на плоскости – , в трехмерном пространстве – . Скалярным полем часто называют и саму функцию , описывающую данное поле. В зависимости от размерности пространства, скалярное поле может быть плоским, трехмерным и т.д.

Необходимо подчеркнуть, что величина скалярного поля зависит лишь от положения точки в области , но не зависит от выбора системы координат.

Определение 5.9.2 . Скалярное поле, зависящее только от положения точки в области , но не зависящее от времени, называется стационарным .

Нестационарные скалярные поля, то есть зависящие от времени, в данном разделе нами рассматриваться не будут.

В качестве примеров скалярных полей можно назвать поле температур, поле давлений в атмосфере, поле высот над уровнем океана.

Геометрически скалярные поля часто изображаются с помощью так называемых линий или поверхностей уровня.

Определение 5.9.3 . Множество всех точек пространства, в которых скалярное поле имеет одно и то же значение называется поверхностью уровня или эквипотенциальной поверхностью. В плоском случае для скалярного поля это множество называется линией уровня или эквипотенциальной линией .

Очевидно, что уравнение поверхности уровня имеет вид , линии уровня – . Придавая в данных уравнениях константе разные значения, получаем семейство поверхностей или линий уровня. Например, (вложенные друг в друга сферы с разными радиусами) или (семейство эллипсов).

В качестве примеров линий уровня из физики можно привести изотермы (линии равных температур), изобары (линии равных давлений); из геодезии – линии равных высот и т.д.