Определение бесконечно малой. Бесконечно малые и бесконечно большие функции. Доказательство теоремы о произведении ограниченной функции на бесконечно малую

Бесконечно малые функции

Функцию %%f(x)%% называют бесконечно малой (б.м.) при %%x \to a \in \overline{\mathbb{R}}%%, если при этом стремлении аргумента предел функции равен нулю.

Понятие б.м. функции неразрывно связано с указанием об изменении ее аргумента. Можно говорить о б.м. функции при %%a \to a + 0%% и при %%a \to a - 0%%. Обычно б.м. функции обозначают первыми буквами греческого алфавита %%\alpha, \beta, \gamma, \ldots%%

Примеры

  1. Функция %%f(x) = x%% является б.м. при %%x \to 0%%, поскольку ее предел в точке %%a = 0%% равен нулю. Согласно теореме о связи двустороннего предела с односторонними эта функция — б.м. как при %%x \to +0%%, так и при %%x \to -0%%.
  2. Функция %%f(x) = 1/{x^2}%% — б.м. при %%x \to \infty%% (а также при %%x \to +\infty%% и при %%x \to -\infty%%).

Отличное от нуля постоянное число, сколь бы оно ни было мало по абсолютному значению, не является б.м. функцией. Для постоянных чисел исключение составляет лишь нуль, поскольку функция %%f(x) \equiv 0%% имеет нулевой предел.

Теорема

Функция %%f(x)%% имеет в точке %%a \in \overline{\mathbb{R}}%% расширенной числовой прямой конечный предел, равный числу %%b%%, тогда и только тогда, когда эта функция равна сумме этого числа %%b%% и б.м. функции %%\alpha(x)%% при %%x \to a%%, или $$ \exists~\lim\limits_{x \to a}{f(x)} = b \in \mathbb{R} \Leftrightarrow \left(f(x) = b + \alpha(x)\right) \land \left(\lim\limits_{x \to a}{\alpha(x) = 0}\right). $$

Свойства бесконечно малых функций

По правилам предельного перехода при %%c_k = 1~ \forall k = \overline{1, m}, m \in \mathbb{N}%%, следуют утверждения:

  1. Сумма конечного числа б.м. функций при %%x \to a%% есть б.м. при %%x \to a%%.
  2. Произведение любого числа б.м. функций при %%x \to a%% есть б.м. при %%x \to a%%.
  3. Произведение б.м. функций при %%x \to a%% и функции, ограниченной в некоторой проколотой окрестности %%\stackrel{\circ}{\text{U}}(a)%% точки а, есть б.м. при %%x \to a%% функция.

    Ясно, что произведение постоянной функции и б.м. при %%x \to a%% есть б.м. функция при %%x \to a%%.

Эквивалентные бесконечно малые функции

Бесконечно малые функции %%\alpha(x), \beta(x)%% при %%x \to a%% называются эквивалентными и пишутся %%\alpha(x) \sim \beta(x)%%, если

$$ \lim\limits_{x \to a}{\frac{\alpha(x)}{\beta(x)}} = \lim\limits_{x \to a}{\frac{\beta(x)}{\alpha(x)}} = 1. $$

Теормема о замене б.м. функций эквивалентными

Пусть %%\alpha(x), \alpha_1(x), \beta(x), \beta_1(x)%% — б.м. функции при %%x \to a%%, причем %%\alpha(x) \sim \alpha_1(x); \beta(x) \sim \beta_1(x)%%, тогда $$ \lim\limits_{x \to a}{\frac{\alpha(x)}{\beta(x)}} = \lim\limits_{x \to a}{\frac{\alpha_1(x)}{\beta_1(x)}}. $$

Эквивалентные б.м. функции.

Пусть %%\alpha(x)%% — б.м. функция при %%x \to a%%, тогда

  1. %%\sin(\alpha(x)) \sim \alpha(x)%%
  2. %%\displaystyle 1 - \cos(\alpha(x)) \sim \frac{\alpha^2(x)}{2}%%
  3. %%\tan \alpha(x) \sim \alpha(x)%%
  4. %%\arcsin\alpha(x) \sim \alpha(x)%%
  5. %%\arctan\alpha(x) \sim \alpha(x)%%
  6. %%\ln(1 + \alpha(x)) \sim \alpha(x)%%
  7. %%\displaystyle\sqrt[n]{1 + \alpha(x)} - 1 \sim \frac{\alpha(x)}{n}%%
  8. %%\displaystyle a^{\alpha(x)} - 1 \sim \alpha(x) \ln(a)%%

Пример

$$ \begin{array}{ll} \lim\limits_{x \to 0}{ \frac{\ln\cos x}{\sqrt{1 + x^2} - 1}} & = \lim\limits_{x \to 0}{\frac{\ln(1 + (\cos x - 1))}{\frac{x^2}{4}}} = \\ & = \lim\limits_{x \to 0}{\frac{4(\cos x - 1)}{x^2}} = \\ & = \lim\limits_{x \to 0}{-\frac{4 x^2}{2 x^2}} = -2 \end{array} $$

Бесконечно большие функции

Функцию %%f(x)%% называют бесконечно большой (б.б.) при %%x \to a \in \overline{\mathbb{R}}%%, если при этом стремлении аргумента функция имеет бесконечный предел.

Подобно б.м. функциям понятие б.б. функции неразрывно связано с указанием об изменении ее аргумента. Можно говорить о б.б. функции при %%x \to a + 0%% и %%x \to a - 0%%. Термин “бесконечно большая” говорит не об абсолютном значении функции, а о характере его изменения в окрестности рассматриваемой точки. Никакое постоянное число, как бы велико оно ни было по абсолютному значению, не является бесконечно большим.

Примеры

  1. Функция %%f(x) = 1/x%% — б.б. при %%x \to 0%%.
  2. Функция %%f(x) = x%% — б.б. при %%x \to \infty%%.

Если выполнены условия определений $$ \begin{array}{l} \lim\limits_{x \to a}{f(x)} = +\infty, \\ \lim\limits_{x \to a}{f(x)} = -\infty, \end{array} $$

то говорят о положительной или отрицательной б.б. при %%a%% функции.

Пример

Функция %%1/{x^2}%% — положительная б.б. при %%x \to 0%%.

Связь между б.б. и б.м. функциями

Если %%f(x)%% — б.б. при %%x \to a%% функция, то %%1/f(x)%% — б.м.

при %%x \to a%%. Если %%\alpha(x)%% — б.м. при %%x \to a%% функция, отличная от нуля в некоторой проколотой окрестности точки %%a%%, то %%1/\alpha(x)%% — б.б. при %%x \to a%%.

Свойства бесконечно больших функций

Приведем несколько свойств б.б. функций. Эти свойства непосредственно следуют из определения б.б. функции и свойств функций, имеющих конечные пределы, а также из теоремы о связи между б.б. и б.м. функциями.

  1. Произведение конечного числа б.б. функций при %%x \to a%% есть б.б. функция при %%x \to a%%. Действительно, если %%f_k(x), k = \overline{1, n}%% — б.б. функции при %%x \to a%%, то в некоторой проколотой окрестности точки %%a%% %%f_k(x) \ne 0%%, и по теореме о связи б.б. и б.м. функций %%1/f_k(x)%% — б.м. функция при %%x \to a%%. Получается %%\displaystyle\prod^{n}_{k = 1} 1/f_k(x)%% — б.м функция при %%x \to a%%, а %%\displaystyle\prod^{n}_{k = 1}f_k(x)%% — б.б. функция при %%x \to a%%.
  2. Произведение б.б. функции при %%x \to a%% и функции, которая в некоторой проколотой окрестности точки %%a%% по абсолютному значению больше положительной постоянной, есть б.б. функция при %%x \to a%%. В частности, произведение б.б. функции при %%x \to a%% и функции, имеющей в точке %%a%% конечный ненулевой предел, будет б.б. функцией при %%x \to a%%.
  3. Сумма ограниченной в некоторой проколотой окрестности точки %%a%% функции и б.б. функции при %%x \to a%% есть б.б. функция при %%x \to a%%.

    Например, функции %%x - \sin x%% и %%x + \cos x%% — б.б. при %%x \to \infty%%.

  4. Сумма двух б.б. функций при %%x \to a%% есть неопределенность. В зависимости от знака слагаемых характер изменения такой суммы может быть самым различным.

    Пример

    Пусть даны функции %%f(x)= x, g(x) = 2x, h(x) = -x, v(x) = x + \sin x%% — б.б. функции при %%x \to \infty%%. Тогда:

    • %%f(x) + g(x) = 3x%% — б.б. функция при %%x \to \infty%%;
    • %%f(x) + h(x) = 0%% — б.м. функция при %%x \to \infty%%;
    • %%h(x) + v(x) = \sin x%% не имет предела при %%x \to \infty%%.

Единственность предела и ограниченность сходящейся числовой последовательности

Определение 1 . Числовая последовательность (1) называется ограниченной, если множество членов этой последовательности образует ограниченное множество.

В этом случае числовую последовательность (1) мы будем называть ограниченной величиной .

Определение 2 . Числовая последовательность (1) сходится и имеет предел (Возможно использование записи ), если .

Давайте повторим это определение, используя в большей степени русский язык. Предел числовой последовательности существует и равен некоторому числу, если, начиная с некоторого номера, все члены последовательности удалены от этого предельного числа менее, чем любое, наперед заданное, сколь угодно малое положительное число. Можно это же самое сказать другими словами. Число будет пределом числовой последовательности (1) тогда и только тогда, когда для каждой -окрестности точки все члены последовательности, начиная с некоторого номера, лежат в этой –окрестности. Заметим, что интервал называется -окрестностью точки .

Теорема 1 . Если предел числовой последовательности существует, то он единственный.

Доказательство . Доказательство теоремы проведем «методом от противного». Предположим, что теорема неверна и существует, как минимум, 2 числа и (), для которых выполнены условия определения 2. В этом определении возьмем . Тогда, после номера члены последовательности отличаются от числа меньше чем на , а после номера члены последовательности отличаются от числа меньше чем на . Покажем, что этого не может быть. В самом деле, при выполнены соотношения , , откуда для этих имеем . Теорема доказана.

Теорема 2 . Если числовая последовательность имеет предел, то эта числовая последовательность ограничена.

Доказательство . Доказательство будет носить конструктивный характер. Возьмем и найдем соответствующее . Разобьем последовательность на 2 части: первые членов и остальные члены последовательности. Первая группа состоит из конечного числа членов и поэтому ограничена. Вторая группа состоит из чисел, удаленных от предельного значения не больше чем на 1, и поэтому также ограничена. Объединение двух ограниченных множеств есть множество ограниченное. Теорема доказана.



Бесконечно малые величины и их свойства

Определение 3 . Числовая последовательность называется бесконечно малой величиной , если она имеет предел, равный 0.

Для бесконечно малых величин используются обозначение б. м .

Пусть заданы числовые последовательности и . Числовая последовательность с общим членом , называется суммой этих числовых последовательностей. Числовая последовательность с общим членом , называется суммой этих числовых последовательностей. Числовая последовательность с общим членом , называется суммой этих числовых последовательностей.

Теорема 3 . Сумма конечного числа бесконечно малых величин есть величина бесконечно малая.

Доказательство . Достаточно доказать утверждение для суммы двух б. м. Пусть числовые последовательности и являются бесконечно малыми величинами, т. е. пределы этих последовательностей равны 0. Данный факт означает следующее. Если задано произвольное, скроль угодно малое положительное число , то для числа и числовой последовательности существует номер , обладающий тем свойством, что при выполнено соотношение . По той же причине для этого же числа и числовой последовательности существует номер , обладающий тем свойством, что при выполнено соотношение . Возьмем число , тогда при справедливы соотношения . Итак, для произвольного мы нашли номер , такой что при выполнено . Следовательно, предел последовательности , равен 0, и она является бесконечно малой величиной. Теорема доказана.

Теорема 4 . Произведение бесконечно малой величины на ограниченную величину есть величина бесконечно малая.

Доказательство . Пусть числовая последовательность является бесконечно малой величиной, а числовая последовательность является ограниченной величиной. Это означает что, с одной стороны, , с другой стороны, существует число такое, что для каждого выполнено условие . Пусть теперь задано произвольное, скроль угодно малое положительное число . Рассмотрим числа , для него в числовой последовательности существует номер , обладающий тем свойством, что при выполнено соотношение . При этом будет выполнено условие , что и означает, что произведение этих двух величин – бесконечно малой и ограниченной есть величина бесконечно малая. Теорема доказана.

Свойства пределов

А как конкретно происходит вычисление пределов, в данном случае числовых последовательностей? Мы стараемся представить величину, предел которой надо найти, в виде суммы, разности, произведения, частного более простых величин, предел которых легко найти. Для обоснования такого подхода надо сформулировать и доказать свойства пределов.

Теорема 5 . Числовая последовательность имеет предел, равный тогда и только тогда, когда последовательность , является бесконечно малой величиной.

Доказательство . Пусть , т.е. при для каждого при выполнено неравенство (). Но это неравенство равносильно тому, что , т. е. последовательность , имеет предел 0, т.е. является бесконечно малой величиной. Теорема доказана. , где - б. м. Отсюда следует, что . В последней скобке сумма двух бесконечно малых величин есть величина б. м. Поэтому представляется в виде суммы и бесконечно малой величины . В силу теоремы 5 это означает, что . Первое утверждение теоремы доказана. Формула доказывается совершенно аналогично. Рассмотрим теперь формулу и используем для преобразования левой части те же обозначения. Поэтому …

Сравнение бесконечно малых функций, эквивалентные функции

Бесконечно малые и бесконечно большие величины.

О.1. Последовательность называется бесконечно большой, если для любого положительного числа А (сколь большим бы мы его не взяли) существует номер N такой, что при n›N выполняется неравенство | х п | › А, т.е. какое бы большое число А мы не взяли, найдется такой номер, начиная с которого все члены последовательности окажутся больше А.

Определение 6 . Последовательность {α п } называется бесконечно малой, если для любого положительного числа ε (сколь малым бы мы его не взяли) существует номер N такой, что при n›N выполняется неравенство | α п | ‹ε.

1. Последовательность {п} является бесконечно большой.

2. Последовательность {} является бесконечно малой.

Теорема 1. Если {х п } - бесконечно большая последовательность и все ее члены отличны от нуля, х п ≠0, то последовательность {α п }=- бесконечно малая, и, обратно, если {α п } бесконечно малая последовательность, α п ≠0, то последовательность {х п }=бесконечно большая.

Сформулируем основные свойства бесконечно малых последовательностей в виде теорем.

Теорема 2. Сумма и разность двух бесконечно малых последовательностей есть бесконечно малые последовательности.

Пример 2. Последовательность с общим членом бесконечно малая, т.к. т.е заданная последовательность является суммой бесконечно малых последовательностей и и поэтому является бесконечно малой.

Следствие. Алгебраическая сумма любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Теорема 3. Произведение двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Следствие. Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Замечание. Частное двух бесконечно малых последовательностей может быть любой последовательностью и может не иметь смысла.

Например, если , , то все элементы последовательности равны 1 и данная последовательность является ограниченной. Если , , то последовательность - бесконечно большая, и наоборот, если , а , то - бесконечно малая последовательность. Если начиная с некоторого номера элементы последовательности равны нулю, то последовательность не имеет смысла.

Теорема 4. Произведение ограниченной последовательности на бесконечно малую есть бесконечно малая последовательность.

Пример 3. Последовательность бесконечно малая, т.к. и последовательность {}- бесконечно малая, последовательность - ограничена, т.к. ‹ 1. Следовательно, - бесконечно малая последовательность.

Следствие. Произведение бесконечно малой последовательности на число есть бесконечно малая последовательность.

Определение. Функция f(x) называется бесконечно большой при , если для любого, даже сколь угодно большого положительного числа , найдется такое положительное число (зависящее от М, δ=δ(М)), что для всех х, не равных х 0 и удовлетворяющих условию , выполняется неравенство

Записывают: или при .

Например, функция есть бесконечно большая функция при ; функция при .

Если f(x) стремится к бесконечности при и принимает лишь положительные значения, то пишут , если лишь отрицательные значения, то .

Определение. Функция f(x), заданная на всей числовой прямой, называется бесконечно большой при , если для любого положительного числа , найдется такое положительное число (зависящее от М, N=N(М)), что при всех х, удовлетворяющих условию , выполняется неравенство

Например, функция у=2 х есть бесконечно большая функция при ; функция является бесконечно большой функцией при .

Свойства бесконечно больших функций:

1. Произведение б.б.ф. на функцию, предел которой отличен от нуля, есть б.б.ф.

2. Сумма б.б.ф. и ограниченной функции есть б.б.ф.

3. Частное от деления б.б.ф. на функцию, имеющую предел, есть б.б.ф.

Например, если функция f(x)=tgx есть б.б.ф. при , функция φ(х)=4х-3 при имеет предел (2π-3) отличный от нуля, а функция ψ(х)=sinx – ограниченная функция, то

f(x) φ(х)=(4х-3) tgx; f(x) + ψ(х)= tgx + sinx; есть бесконечно большие функции при .

Определение. Функция f(x) называется бесконечно малой при , если

По определению предела функции равенство (1) означает: для любого, даже сколь угодно малого положительного числа , найдется такое положительное число (зависящее от ε, δ=δ(ε)), что для всех х, не равных х 0 и удовлетворяющих условию , выполняется неравенство

Теорема. Для выполнения равенства необходимо и достаточно, чтобы функция была бесконечно малой при . При этом функция может быть представлена в виде .

Аналогично определяется б.м.ф. при ,- 0, , во всех случаях f(x)0.

Бесконечно малые функции часто называют бесконечно малыми величинами или бесконечно малыми; обозначают обычно греческими буквами α, β и т.д.

Например, у=х 2 при х→0; у=х-2 при х→2; у=sinx при х→πк, - бесконечно малые функции.

Свойства бесконечно малых функций:

1. Сумма конечного числа бесконечно малых функций есть величина бесконечно малая;

2. Произведение конечного числа бесконечно малых функций, а также бесконечно малой функции на ограниченную функция, есть величина бесконечно малая;

3. Частное от деления бесконечно малой функции на функцию, предел которой не равен нолю, если величина бесконечно малая.

Рассмотрим последнее свойство при если функции и являются бесконечно малыми (Сравнение бесконечно малых функций):

1). Если , то называется бесконечно малой, более высокого порядка малости, чем .

Пример . При х→2 функция (х - 2) 3 бесконечно малая более высокого порядка, чем (х -2), так как .

2). Если , то и называются бесконечно малыми одного порядка (имеют одинаковую скорость стремления к нолю);

Пример . При х→0 функции 5х 2 и х 2 являются бесконечно малыми одного порядка, так как .

3). Если ,то и называются эквивалентными бесконечно малыми, обозначаются ~., то

Связь между бесконечно малыми и бесконечно большими функциями: функция обратная бесконечно малой является бесконечно большой (и наоборот), т.е. если - бесконечно малая функция, то - бесконечно большая.

Материал из Википедии - свободной энциклопедии

Бесконечно малая - числовая функция или последовательность, которая стремится к нулю.

Бесконечно большая - числовая функция или последовательность, которая стремится к бесконечности определённого знака.

Исчисление бесконечно малых и больших

Исчисление бесконечно малых - вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная сумма бесконечно малых. Исчисление бесконечно малых величин является общим понятием для дифференциальных и интегральных исчислений , составляющих основу современной высшей математики . Понятие бесконечно малой величины тесно связано с понятием предела .

Бесконечно малая

Последовательность a_n называется бесконечно малой , если \lim\limits_{n\to\infty}a_n=0. Например, последовательность чисел a_n=\dfrac{1}{n} - бесконечно малая.

Функция называется бесконечно малой в окрестности точки x_0, если \lim\limits_{x\to x_0}f(x)=0.

Функция называется бесконечно малой на бесконечности , если \lim\limits_{x\to+\infty}f(x)=0 либо \lim\limits_{x\to-\infty}f(x)=0.

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если \lim\limits_{x\to+\infty}f(x)=a, то f(x)-a=\alpha(x), \lim\limits_{x\to+\infty}(f(x)-a)=0.

Подчеркнём, что бесконечно малую величину следует понимать как переменную величину (функцию), которая лишь в процессе своего изменения [при стремлении x к a (из \lim\limits_{x\to a}f(x)=0)] делается меньше произвольного числа (\varepsilon). Поэтому, например, утверждение типа «одна миллионная есть бесконечно малая величина» неверно: о числе [абсолютном значении] не имеет смысла говорить, что оно бесконечно малое.

Бесконечно большая

Во всех приведённых ниже формулах бесконечность справа от равенства подразумевается определённого знака (либо «плюс», либо «минус»). То есть, например, функция x\sin x, неограниченная с обеих сторон, не является бесконечно большой при x\to+\infty.

Последовательность a_n называется бесконечно большой , если \lim\limits_{n\to\infty}a_n=\infty.

Функция называется бесконечно большой в окрестности точки x_0, если \lim\limits_{x\to x_0}f(x)=\infty.

Функция называется бесконечно большой на бесконечности , если \lim\limits_{x\to+\infty}f(x)=\infty либо \lim\limits_{x\to-\infty}f(x)=\infty.

Как и в случае бесконечно малых, необходимо отметить, что ни одно отдельно взятое значение бесконечно большой величины не может быть названо как «бесконечно большое» - бесконечно большая величина - это функция , которая лишь в процессе своего изменения может стать больше произвольно взятого числа.

Свойства бесконечно малых

  • Алгебраическая сумма конечного числа бесконечно малых функций есть бесконечно малая функция.
  • Произведение бесконечно малых - бесконечно малая.
  • Произведение бесконечно малой последовательности на ограниченную - бесконечно малая. Как следствие, произведение бесконечно малой на константу - бесконечно малая.
  • Если a_n - бесконечно малая последовательность, сохраняющая знак, то b_n=\dfrac{1}{a_n} - бесконечно большая последовательность.

Сравнение бесконечно малых

Определения

Допустим, у нас есть бесконечно малые при одном и том же x\to a величины \alpha(x) и \beta(x) (либо, что не важно для определения, бесконечно малые последовательности).

  • Если \lim\limits_{x\to a}\dfrac{\beta}{\alpha}=0, то \beta - бесконечно малая высшего порядка малости , чем \alpha. Обозначают \beta=o(\alpha) или \beta\prec\alpha.
  • Если \lim\limits_{x\to a}\dfrac{\beta}{\alpha}=\infty, то \beta - бесконечно малая низшего порядка малости , чем \alpha. Соответственно \alpha=o(\beta) или \alpha\prec\beta.
  • Если \lim\limits_{x\to a}\dfrac{\beta}{\alpha}=c (предел конечен и не равен 0), то \alpha и \beta являются бесконечно малыми величинами одного порядка малости . Это обозначается как \alpha\asymp\beta или как одновременное выполнение отношений \beta=O(\alpha) и \alpha=O(\beta). Следует заметить, что в некоторых источниках можно встретить обозначение, когда одинаковость порядков записывают в виде только одного отношения «о большое», что является вольным использованием данного символа.
  • Если \lim\limits_{x\to a}\dfrac{\beta}{\alpha^m}=c (предел конечен и не равен 0), то бесконечно малая величина \beta имеет m-й порядок малости относительно бесконечно малой \alpha.

Для вычисления подобных пределов удобно использовать правило Лопиталя .

Примеры сравнения

  • При {x\to 0} величина x^5 имеет высший порядок малости относительно x^3, так как \lim\limits_{x\to 0}\dfrac{x^5}{x^3}=0. С другой стороны, x^3 имеет низший порядок малости относительно x^5, так как \lim\limits_{x\to 0}\dfrac{x^3}{x^5}=\infty.
С использованием О -символики полученные результаты могут быть записаны в следующем виде x^5=o(x^3).
  • \lim\limits_{x\to 0}\dfrac{2x^2+6x}{x}=\lim\limits_{x\to 0}\dfrac{2x+6}{1}=\lim\limits_{x\to 0}(2x+6)=6, то есть при x\to 0 функции f(x)=2x^2+6x и g(x)=x являются бесконечно малыми величинами одного порядка.
В данном случае справедливы записи 2x^2+6x = O(x) и x = O(2x^2+6x).
  • При {x\to 0} бесконечно малая величина 2x^3 имеет третий порядок малости относительно x, поскольку \lim\limits_{x\to 0}\dfrac{2x^3}{x^3}=2, бесконечно малая 0{,}7x^2 - второй порядок, бесконечно малая \sqrt{x} - порядок 0,5.

Эквивалентные величины

Определение

Если \lim\limits_{x\to a}\dfrac{\beta}{\alpha}=1, то бесконечно малые или бесконечно большие величины \alpha и \beta называются эквивалентными (обозначается как \alpha\thicksim\beta).

Очевидно, что эквивалентные величины являются частным случаем бесконечно малых (бесконечно больших) величин одного порядка малости.

При справедливы следующие соотношения эквивалентности (как следствия из так называемых замечательных пределов):

  • \sin\alpha(x)\thicksim\alpha(x);
  • \mathrm{tg}\,\alpha(x)\thicksim\alpha(x);
  • \arcsin{\alpha(x)}\thicksim\alpha(x);
  • \mathrm{arctg}\,\alpha(x)\thicksim\alpha(x);
  • \log_a(1+\alpha(x))\thicksim\alpha(x)\cdot\frac{1}{\ln{a}}, где a>0;
  • \ln(1+\alpha (x))\thicksim\alpha(x);
  • a^{\alpha(x)}-1\thicksim\alpha(x)\cdot\ln{a}, где a>0;
  • e^{\alpha(x)}-1\thicksim\alpha(x);
  • 1-\cos{\alpha(x)}\thicksim\frac{\alpha^2(x)}{2};
  • (1+\alpha(x))^\mu-1\thicksim\mu\cdot\alpha(x),\quad\mu\in\R, поэтому используют выражение:
\sqrt[n]{1+\alpha(x)}\approx\frac{\alpha(x)}{n}+1, где \alpha(x)\xrightarrow{}0.

Теорема

Предел частного (отношения) двух бесконечно малых или бесконечно больших величин не изменится, если одну из них (или обе) заменить эквивалентной величиной .

Данная теорема имеет прикладное значение при нахождении пределов (см. пример).

Примеры использования

  • Найти \lim\limits_{x\to 0}\dfrac{\sin 2x}{x}.
Заменяя \sin 2x эквивалентной величиной 2x, получаем \lim\limits_{x\to 0}\dfrac{\sin 2x}{x}=\lim\limits_{x\to 0}\dfrac{2x}{x}=2.
  • Найти \lim\limits_{x\to\frac{\pi}{2}}\dfrac{\sin(4\cos x)}{\cos x}.
Так как \sin(4\cos x)\thicksim{4\cos x} при x\to\dfrac{\pi}{2} получим \lim\limits_{x\to \frac{\pi}{2}}\dfrac{\sin(4\cos x)}{\cos x}=\lim\limits_{x\to\frac{\pi}{2}}\dfrac{4\cos x}{\cos x}=4.
  • Вычислить \sqrt{1{,}2}.
Используя формулу : \sqrt{1{,}2}\approx 1+\frac{0{,}2}{2}=1{,}1, тогда как, используя калькулятор (более точные вычисления), получили: \sqrt{1{,}2}\approx 1{,}095, таким образом ошибка составила 0,005 (менее 1 %), то есть метод полезен, благодаря своей простоте, при грубой оценке арифметических корней близких к единице.

История

Математики старой школы подвергли концепцию бесконечно малых резкой критике. Мишель Ролль писал, что новое исчисление есть «набор гениальных ошибок »; Вольтер ядовито заметил, что это исчисление представляет собой искусство вычислять и точно измерять вещи, существование которых не может быть доказано. Даже Гюйгенс признавался, что не понимает смысла дифференциалов высших порядков .

Как иронию судьбы можно рассматривать появление в середине XX века нестандартного анализа , который доказал, что первоначальная точка зрения - актуальные бесконечно малые - также непротиворечива и могла бы быть положена в основу анализа. С появлением нестандартного анализа стало ясно, почему математики XVIII века, выполняя незаконные с точки зрения классической теории действия, тем не менее получали верные результаты.

См. также

Напишите отзыв о статье "Бесконечно малая и бесконечно большая"

Примечания

Литература

  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.

Отрывок, характеризующий Бесконечно малая и бесконечно большая

– Ну, мой друг, я боюсь, что вы с монахом даром растрачиваете свой порох, – насмешливо, но ласково сказал князь Андрей.
– Аh! mon ami. [А! Друг мой.] Я только молюсь Богу и надеюсь, что Он услышит меня. Andre, – сказала она робко после минуты молчания, – у меня к тебе есть большая просьба.
– Что, мой друг?
– Нет, обещай мне, что ты не откажешь. Это тебе не будет стоить никакого труда, и ничего недостойного тебя в этом не будет. Только ты меня утешишь. Обещай, Андрюша, – сказала она, сунув руку в ридикюль и в нем держа что то, но еще не показывая, как будто то, что она держала, и составляло предмет просьбы и будто прежде получения обещания в исполнении просьбы она не могла вынуть из ридикюля это что то.
Она робко, умоляющим взглядом смотрела на брата.
– Ежели бы это и стоило мне большого труда… – как будто догадываясь, в чем было дело, отвечал князь Андрей.
– Ты, что хочешь, думай! Я знаю, ты такой же, как и mon pere. Что хочешь думай, но для меня это сделай. Сделай, пожалуйста! Его еще отец моего отца, наш дедушка, носил во всех войнах… – Она всё еще не доставала того, что держала, из ридикюля. – Так ты обещаешь мне?
– Конечно, в чем дело?
– Andre, я тебя благословлю образом, и ты обещай мне, что никогда его не будешь снимать. Обещаешь?
– Ежели он не в два пуда и шеи не оттянет… Чтобы тебе сделать удовольствие… – сказал князь Андрей, но в ту же секунду, заметив огорченное выражение, которое приняло лицо сестры при этой шутке, он раскаялся. – Очень рад, право очень рад, мой друг, – прибавил он.
– Против твоей воли Он спасет и помилует тебя и обратит тебя к Себе, потому что в Нем одном и истина и успокоение, – сказала она дрожащим от волнения голосом, с торжественным жестом держа в обеих руках перед братом овальный старинный образок Спасителя с черным ликом в серебряной ризе на серебряной цепочке мелкой работы.
Она перекрестилась, поцеловала образок и подала его Андрею.
– Пожалуйста, Andre, для меня…
Из больших глаз ее светились лучи доброго и робкого света. Глаза эти освещали всё болезненное, худое лицо и делали его прекрасным. Брат хотел взять образок, но она остановила его. Андрей понял, перекрестился и поцеловал образок. Лицо его в одно и то же время было нежно (он был тронут) и насмешливо.
– Merci, mon ami. [Благодарю, мой друг.]
Она поцеловала его в лоб и опять села на диван. Они молчали.
– Так я тебе говорила, Andre, будь добр и великодушен, каким ты всегда был. Не суди строго Lise, – начала она. – Она так мила, так добра, и положение ее очень тяжело теперь.
– Кажется, я ничего не говорил тебе, Маша, чтоб я упрекал в чем нибудь свою жену или был недоволен ею. К чему ты всё это говоришь мне?
Княжна Марья покраснела пятнами и замолчала, как будто она чувствовала себя виноватою.
– Я ничего не говорил тебе, а тебе уж говорили. И мне это грустно.
Красные пятна еще сильнее выступили на лбу, шее и щеках княжны Марьи. Она хотела сказать что то и не могла выговорить. Брат угадал: маленькая княгиня после обеда плакала, говорила, что предчувствует несчастные роды, боится их, и жаловалась на свою судьбу, на свекра и на мужа. После слёз она заснула. Князю Андрею жалко стало сестру.
– Знай одно, Маша, я ни в чем не могу упрекнуть, не упрекал и никогда не упрекну мою жену, и сам ни в чем себя не могу упрекнуть в отношении к ней; и это всегда так будет, в каких бы я ни был обстоятельствах. Но ежели ты хочешь знать правду… хочешь знать, счастлив ли я? Нет. Счастлива ли она? Нет. Отчего это? Не знаю…
Говоря это, он встал, подошел к сестре и, нагнувшись, поцеловал ее в лоб. Прекрасные глаза его светились умным и добрым, непривычным блеском, но он смотрел не на сестру, а в темноту отворенной двери, через ее голову.
– Пойдем к ней, надо проститься. Или иди одна, разбуди ее, а я сейчас приду. Петрушка! – крикнул он камердинеру, – поди сюда, убирай. Это в сиденье, это на правую сторону.
Княжна Марья встала и направилась к двери. Она остановилась.
– Andre, si vous avez. la foi, vous vous seriez adresse a Dieu, pour qu"il vous donne l"amour, que vous ne sentez pas et votre priere aurait ete exaucee. [Если бы ты имел веру, то обратился бы к Богу с молитвою, чтоб Он даровал тебе любовь, которую ты не чувствуешь, и молитва твоя была бы услышана.]
– Да, разве это! – сказал князь Андрей. – Иди, Маша, я сейчас приду.
По дороге к комнате сестры, в галлерее, соединявшей один дом с другим, князь Андрей встретил мило улыбавшуюся m lle Bourienne, уже в третий раз в этот день с восторженною и наивною улыбкой попадавшуюся ему в уединенных переходах.
– Ah! je vous croyais chez vous, [Ах, я думала, вы у себя,] – сказала она, почему то краснея и опуская глаза.
Князь Андрей строго посмотрел на нее. На лице князя Андрея вдруг выразилось озлобление. Он ничего не сказал ей, но посмотрел на ее лоб и волосы, не глядя в глаза, так презрительно, что француженка покраснела и ушла, ничего не сказав.
Когда он подошел к комнате сестры, княгиня уже проснулась, и ее веселый голосок, торопивший одно слово за другим, послышался из отворенной двери. Она говорила, как будто после долгого воздержания ей хотелось вознаградить потерянное время.
– Non, mais figurez vous, la vieille comtesse Zouboff avec de fausses boucles et la bouche pleine de fausses dents, comme si elle voulait defier les annees… [Нет, представьте себе, старая графиня Зубова, с фальшивыми локонами, с фальшивыми зубами, как будто издеваясь над годами…] Xa, xa, xa, Marieie!
Точно ту же фразу о графине Зубовой и тот же смех уже раз пять слышал при посторонних князь Андрей от своей жены.
Он тихо вошел в комнату. Княгиня, толстенькая, румяная, с работой в руках, сидела на кресле и без умолку говорила, перебирая петербургские воспоминания и даже фразы. Князь Андрей подошел, погладил ее по голове и спросил, отдохнула ли она от дороги. Она ответила и продолжала тот же разговор.
Коляска шестериком стояла у подъезда. На дворе была темная осенняя ночь. Кучер не видел дышла коляски. На крыльце суетились люди с фонарями. Огромный дом горел огнями сквозь свои большие окна. В передней толпились дворовые, желавшие проститься с молодым князем; в зале стояли все домашние: Михаил Иванович, m lle Bourienne, княжна Марья и княгиня.
Князь Андрей был позван в кабинет к отцу, который с глазу на глаз хотел проститься с ним. Все ждали их выхода.
Когда князь Андрей вошел в кабинет, старый князь в стариковских очках и в своем белом халате, в котором он никого не принимал, кроме сына, сидел за столом и писал. Он оглянулся.
– Едешь? – И он опять стал писать.
– Пришел проститься.
– Целуй сюда, – он показал щеку, – спасибо, спасибо!
– За что вы меня благодарите?
– За то, что не просрочиваешь, за бабью юбку не держишься. Служба прежде всего. Спасибо, спасибо! – И он продолжал писать, так что брызги летели с трещавшего пера. – Ежели нужно сказать что, говори. Эти два дела могу делать вместе, – прибавил он.
– О жене… Мне и так совестно, что я вам ее на руки оставляю…
– Что врешь? Говори, что нужно.
– Когда жене будет время родить, пошлите в Москву за акушером… Чтоб он тут был.
Старый князь остановился и, как бы не понимая, уставился строгими глазами на сына.
– Я знаю, что никто помочь не может, коли натура не поможет, – говорил князь Андрей, видимо смущенный. – Я согласен, что и из миллиона случаев один бывает несчастный, но это ее и моя фантазия. Ей наговорили, она во сне видела, и она боится.
– Гм… гм… – проговорил про себя старый князь, продолжая дописывать. – Сделаю.
Он расчеркнул подпись, вдруг быстро повернулся к сыну и засмеялся.
– Плохо дело, а?
– Что плохо, батюшка?
– Жена! – коротко и значительно сказал старый князь.
– Я не понимаю, – сказал князь Андрей.
– Да нечего делать, дружок, – сказал князь, – они все такие, не разженишься. Ты не бойся; никому не скажу; а ты сам знаешь.
Он схватил его за руку своею костлявою маленькою кистью, потряс ее, взглянул прямо в лицо сына своими быстрыми глазами, которые, как казалось, насквозь видели человека, и опять засмеялся своим холодным смехом.
Сын вздохнул, признаваясь этим вздохом в том, что отец понял его. Старик, продолжая складывать и печатать письма, с своею привычною быстротой, схватывал и бросал сургуч, печать и бумагу.
– Что делать? Красива! Я всё сделаю. Ты будь покоен, – говорил он отрывисто во время печатания.
Андрей молчал: ему и приятно и неприятно было, что отец понял его. Старик встал и подал письмо сыну.
– Слушай, – сказал он, – о жене не заботься: что возможно сделать, то будет сделано. Теперь слушай: письмо Михайлу Иларионовичу отдай. Я пишу, чтоб он тебя в хорошие места употреблял и долго адъютантом не держал: скверная должность! Скажи ты ему, что я его помню и люблю. Да напиши, как он тебя примет. Коли хорош будет, служи. Николая Андреича Болконского сын из милости служить ни у кого не будет. Ну, теперь поди сюда.
Он говорил такою скороговоркой, что не доканчивал половины слов, но сын привык понимать его. Он подвел сына к бюро, откинул крышку, выдвинул ящик и вынул исписанную его крупным, длинным и сжатым почерком тетрадь.
– Должно быть, мне прежде тебя умереть. Знай, тут мои записки, их государю передать после моей смерти. Теперь здесь – вот ломбардный билет и письмо: это премия тому, кто напишет историю суворовских войн. Переслать в академию. Здесь мои ремарки, после меня читай для себя, найдешь пользу.
Андрей не сказал отцу, что, верно, он проживет еще долго. Он понимал, что этого говорить не нужно.
– Всё исполню, батюшка, – сказал он.
– Ну, теперь прощай! – Он дал поцеловать сыну свою руку и обнял его. – Помни одно, князь Андрей: коли тебя убьют, мне старику больно будет… – Он неожиданно замолчал и вдруг крикливым голосом продолжал: – а коли узнаю, что ты повел себя не как сын Николая Болконского, мне будет… стыдно! – взвизгнул он.
– Этого вы могли бы не говорить мне, батюшка, – улыбаясь, сказал сын.
Старик замолчал.
– Еще я хотел просить вас, – продолжал князь Андрей, – ежели меня убьют и ежели у меня будет сын, не отпускайте его от себя, как я вам вчера говорил, чтоб он вырос у вас… пожалуйста.
– Жене не отдавать? – сказал старик и засмеялся.
Они молча стояли друг против друга. Быстрые глаза старика прямо были устремлены в глаза сына. Что то дрогнуло в нижней части лица старого князя.
– Простились… ступай! – вдруг сказал он. – Ступай! – закричал он сердитым и громким голосом, отворяя дверь кабинета.
– Что такое, что? – спрашивали княгиня и княжна, увидев князя Андрея и на минуту высунувшуюся фигуру кричавшего сердитым голосом старика в белом халате, без парика и в стариковских очках.
Князь Андрей вздохнул и ничего не ответил.
– Ну, – сказал он, обратившись к жене.
И это «ну» звучало холодною насмешкой, как будто он говорил: «теперь проделывайте вы ваши штуки».
– Andre, deja! [Андрей, уже!] – сказала маленькая княгиня, бледнея и со страхом глядя на мужа.
Он обнял ее. Она вскрикнула и без чувств упала на его плечо.
Он осторожно отвел плечо, на котором она лежала, заглянул в ее лицо и бережно посадил ее на кресло.
– Adieu, Marieie, [Прощай, Маша,] – сказал он тихо сестре, поцеловался с нею рука в руку и скорыми шагами вышел из комнаты.
Княгиня лежала в кресле, m lle Бурьен терла ей виски. Княжна Марья, поддерживая невестку, с заплаканными прекрасными глазами, всё еще смотрела в дверь, в которую вышел князь Андрей, и крестила его. Из кабинета слышны были, как выстрелы, часто повторяемые сердитые звуки стариковского сморкания. Только что князь Андрей вышел, дверь кабинета быстро отворилась и выглянула строгая фигура старика в белом халате.
– Уехал? Ну и хорошо! – сказал он, сердито посмотрев на бесчувственную маленькую княгиню, укоризненно покачал головою и захлопнул дверь.

В октябре 1805 года русские войска занимали села и города эрцгерцогства Австрийского, и еще новые полки приходили из России и, отягощая постоем жителей, располагались у крепости Браунау. В Браунау была главная квартира главнокомандующего Кутузова.
11 го октября 1805 года один из только что пришедших к Браунау пехотных полков, ожидая смотра главнокомандующего, стоял в полумиле от города. Несмотря на нерусскую местность и обстановку (фруктовые сады, каменные ограды, черепичные крыши, горы, видневшиеся вдали), на нерусский народ, c любопытством смотревший на солдат, полк имел точно такой же вид, какой имел всякий русский полк, готовившийся к смотру где нибудь в середине России.

Понятие бесконечно малых и бесконечно больших величин играет важную роль в математическом анализе. Многие задачи просто и легко решаются используя понятия бесконечно больших и малых величин.

Бесконечно малые .

Переменная называется бесконечно малой, если для любогосуществует такое значение, что каждое следующии за ним значениебудет по абсолютной величине меньше.

Если -бесконечно малая то говорят, что стремится к нулю, и пишут:.

Бесконечно большие .

Переменная x называется бесконечно большой , если для всякого положительного числа c существует такое значение , что каждое следующее за нимx будет по абсолютной величине больше . Пишут:

Величина, обратная к бесконечно большой , есть величина бесконечно малая , и обратно.

10. Свойства пределов функции

1) Предел постоянной величины

Предел постоянной величины равен самой постоянной величине:

2) Предел суммы

Предел суммы двух функций равен сумме пределов этих функций:

Аналогично предел разности двух функций равен разности пределов этих функций.

Расширенное свойство предела суммы:

Предел суммы нескольких функций равен сумме пределов этих функций:

Аналогично предел разности нескольких функций равен разности пределов этих функций.

3) Предел произведения функции на постоянную величину

Постоянный коэффициент можно выносить за знак предела:

4) Предел произведения

Предел произведения двух функций равен произведению пределов этих функций:

Расширенное свойство предела произведения

Предел произведения нескольких функций равен произведению пределов этих функций:

5) Предел частного

Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:

11. Первый замечательный предел

Доказательство

Рассмотрим односторонние пределы и и докажем, что они равны 1.

Пусть . Отложим этот угол на единичной окружности ().

Точка K - точка пересечения луча с окружностью, а точка L - с касательной к единичной окружности в точке . Точка H - проекция точки K на ось OX .

Очевидно, что:

(где - площадь сектора )

Подставляя в (1), получим:

Так как при :

Умножаем на :

Перейдём к пределу:

Найдём левый односторонний предел:

Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.

12-13. Второй замечательный предел

или

Доказательство второго замечательного предела:

Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:

1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где - это целая часть x.

Отсюда следует: , поэтому

Если , то . Поэтому, согласно пределу , имеем:

По признаку (о пределе промежуточной функции) существования пределов .

2. Пусть . Сделаем подстановку , тогда

Из двух этих случаев вытекает, что для вещественного Х

14. Частные производные.

Пусть z=f (x,y ) . Зафиксируем какую-либо точку (x,y ), а затем, не меняя закрепленного значения аргумента y , придадим аргументу x приращение . Тогда z получит приращение, которое называется частным приращением z по x и обозначается и определяется формулой .

Аналогично, если x сохраняет постоянное значение, а y получает приращение , то z получает частное приращение z по y ,.

Определение . Частной производной по x от функции z=f (x,y ) называется предел отношения частного приращения по x к приращению при стремлении к нулю, т.е.

Частная производная обозначается одним из символов.

Аналогично определяется частная производная по y :

.

Таким образом, частные производные функции двух переменных вычисляются по тем же правилам, что и производные функции одного переменного.

Пример . Найти частные производные функции z=x 2 e x-2y .

Частные производные функции любого числа переменных определяются аналогично.