Динамика относительного движения. Теорема об изменении количества движения механической системы Теорема об изменении количества движения материальной точки

Рассмотрим систему, состоящую из материальных точек. Составим для этой системы дифференциальные уравнения движения (13) и сложим их почленно. Тогда получим

Последняя сумма по свойству внутренних сил равна нулю. Кроме того,

Окончательно находим

Уравнение (20) выражает теорему об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна геометрической сумме всех действующих на систему внешних сил. В проекциях на координатные оси будет:

Найдем другое выражение теоремы. Пусть в момент времени количество движения системы равно а в момент становится равным . Тогда, умножая обе части равенства (20) на и интегрируя, получим

так как интегралы, стоящие справа, дают импульсы внешних сил.

Уравнение (21) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов, действующих на систему внешних сил за тот же промежуток времени.

В проекциях на координатные оси будет:

Укажем на связь между доказанной теоремой и теоремой о движении центра масс. Так как , то, подставляя это значение в равенство (20) и учитывая, что получим , т. е. уравнение (16).

Следовательно, теорема о движении центра масс и теорема об изменении количества движения системы представляют собой, по существу, две разные формы одной и той же теоремы. В тех случаях, когда изучается движение твердого тела (или системы тел), можно в равной мере пользоваться любой из этих форм, причем уравнением (16) обычно пользоваться удобнее. Для непрерывной же среды (жидкость, газ) при решении задач обычно пользуются теоремой об изменении количества движения системы. Важные приложения эта теорема имеет также в теории удара (см. гл. XXXI) и при изучении реактивного движения (см. § 114).

Пусть материальная точка движется под действием силы F . Требуется определить движение этой точки по отношению к подвижной системе Oxyz (см. сложное движение материальной точки), которая движется известным образом по отношению к неподвижной системе O 1 x 1 y 1 z 1 .

Основное уравнение динамики в неподвижной системе

Запишем абсолютное ускорение точки по теореме Кориолиса

где a абс – абсолютное ускорение;

a отн – относительное ускорение;

a пер – переносное ускорение;

a кор – кориолисово ускорение.

Перепишем (25) с учетом (26)

Введем обозначения
- переносная сила инерции,
- кориолисова сила инерции. Тогда уравнение (27) приобретает вид

Основное уравнение динамики для изучения относительного движения (28) записывается как же как и для абсолютного движения, только к действующим на точку силам надо добавить переносную и кориолисову силы инерции.

Общие теоремы динамики материальной точки

При решении многих задач можно пользоваться выполненными заранее заготовками, полученными на основе второго закона Ньютона. Такие методы решения задач объединены в этом разделе.

Теорема об изменении количества движения материальной точки

Введем следующие динамические характеристики:

1. Количество движения материальной точки – векторная величина, равная произведению массы точки на вектор ее скорости


. (29)

2. Импульс силы

Элементарный импульс силы – векторная величина, равная произведению вектора силы на элементарный промежуток времени


(30).

Тогда полный импульс

. (31)

При F =const получим S =Ft .

Полный импульс за конечный промежуток времени можно вычислить только в двух случаях, когда действующая на точку сила постоянная или зависит то времени. В других случаях необходимо выразить силу как функцию времени.

Равенство размерностей импульса (29) и количества движения (30) позволяет установить между ними количественную взаимосвязь.

Рассмотрим движение материальной точки M под действием произвольной силы F по произвольной траектории.

ОУД:
. (32)

Разделяем в (32) переменные и интегрируем

. (33)

В итоге, принимая во внимание (31), получаем

. (34)

Уравнение (34) выражает следующую теорему.

Теорема : Изменение количества движения материальной точки за некоторый промежуток времени равно импульсу силы, действующей на точку, за тот же интервал времени.

При решении задач уравнение (34) необходимо спроектировать на оси координат

Данной теоремой удобно пользоваться, когда среди заданных и неизвестных величин присутствуют масса точки, ее начальная и конечная скорость, силы и время движения.

Теорема об изменении момента количества движения материальной точки

М
омент количества движения материальной точки
относительно центра равен произведению модуля количества движения точки на плечо, т.е. кратчайшее расстояние (перпендикуляр) от центра до линии, совпадающей с вектором скорости

, (36)

. (37)

Взаимосвязь между моментом силы (причиной) и моментом количества движения (следствием) устанавливает следующая теорема.

Пусть точка M заданной массы m движется под действием силы F .

,
,

, (38)

. (39)

Вычислим производную от (39)

. (40)

Объединяя (40) и (38), окончательно получим

. (41)

Уравнение (41) выражает следующую теорему.

Теорема : Производная по времени от вектора момента количества движения материальной точки относительно некоторого центра равна моменту действующей на точку силы относительно того же центра.

При решении задач уравнение (41) необходимо спроектировать на оси координат

В уравнениях (42) моменты количеств движения и силы вычисляются относительно координатных осей.

Из (41) вытекает закон сохранения момента количества движения (закон Кеплера).

Если момент силы, действующей на материальную точку, относительно какого-либо центра равен нулю, то момент количества движения точки относительно этого центра сохраняет свою величину и направление.

Если
, то
.

Теорема и закон сохранения используются в задачах на криволинейное движение, в особенности при действии центральных сил.

Количеством движения системы называют геометрическую сумму количеств движения всех материальных точек системы

Для выяснения физического смысла (70) вычислим производную от (64)

. (71)

Решая совместно (70) и (71), получим

. (72)

Таким образом, вектор количества движения механической системы определяется произведением массы системы на скорость ее центра масс .

Вычислим производную от (72)

. (73)

Решая совместно (73) и (67), получим

. (74)

Уравнение (74) выражает следующую теорему.

Теорема: Производная по времени от вектора количества движения системы равна геометрической сумме всех внешних сил системы.

При решении задач уравнение (74) необходимо спроектировать на координатные оси:

. (75)

Из анализа (74) и (75) вытекает следующий закон сохранения количества движения системы : Если сумма всех сил системы равна нулю, то вектор количества движения ее сохраняет свою величину и направление.

Если
, то
,Q = const . (76)

В частном случае этот закон может выполнять вдоль одной из координатных осей.

Если
, то,Q z = const . (77)

Теорему об изменении количества движения целесообразно использовать в тех случаях, когда в систему входят жидкие и газообразные тела.

Теорема об изменении кинетического момента механической системы

Количество движения характеризует только поступательную составляющую движения. Для характеристики вращательного движения тела введено понятие главного момента количеств движения системы относительно заданного центра (кинетического момента).

Кинетическим моментом системы относительно данного центра называется геометрическая сумма моментов количеств движения всех его точек относительно того же центра

. (78)

Проектируя (22) на оси координат можно получить выражение кинетического момента относительно координатных осей

. (79)

Кинетический момент тела относительно осей равен произведению момента инерции тела относительно этой оси на угловую скорость тела

. (80)

Из (80) следует, что кинетический момент характеризует только вращательную составляющую движения.

Характеристикой вращательного действия силы является ее момент относительно оси вращения.

Теорема об изменении кинетического момента устанавливает взаимосвязь между характеристикой вращательного движения и силой, вызывающей это движение.

Теорема: Производная по времени от вектора кинетического момента системы относительно некоторого центра равна геометрической сумме моментов всех внешних сил системы относительно того же центра

. (81)

При решении инженерных задач (81) необходимо спроектировать на координатные оси

Их анализа (81) и (82) вытекает закон сохранения кинетического момента : Если сумма моментов всех внешних сил относительно центра (или оси) равна нулю, то кинетический момент системы относительно этого центра (или оси) сохраняет свою величину и направление.

,

или

Кинетический момент нельзя изменить действием внутренних сил системы, но за счет этих сил можно изменить момент инерции, а следовательно угловую скорость.

Аналогично тому, как для одной материальной точки, выведем теорему об изменении количества движения для системы в различных формах.

Преобразуем уравнение (теорема о движении цента масс механической системы)

следующим образом:

;

;

Полученное уравнение выражает теорему об изменении количества движения механической системы в дифференциальной форме: производная от количества движения механической системы по времени равна главному вектору внешних сил, действующих на систему .

В проекциях на декартовы оси координат:

; ; .

Беря интегралы от обеих частей последних уравнений по времени, получим теорему об изменении количества движения механической системы в интегральной форме: изменение количества движения механической системы равно импульсу главного вектора внешних сил, действующих на систему .

.

Или в проекциях на декартовы оси координат:

; ; .

Следствия из теоремы (законы сохранения количества движения)

Закон сохранения количества движения получаются как частные случаи теоремы об изменении количества движения для системы в зависимости от особенностей системы внешних сил. Внутренние силы могут быть любыми, так как они не влияют на изменения количества движения.

Возможны два случая:

1. Если векторная сумма всех внешних сил, приложенных к системе, равна нулю , то количество движения системы постоянно по величине и направлению

2. Если равна нулю проекция главного вектора внешних сил на какую либо координатную ось и/или и/или , то проекция количества движения на эти же оси является величиной постоянной, т.е. и/или и/или соответственно.

Аналогичные записи можно сделать и для материальной точки и для материальной точки.

Условие задачи . Из орудия, масса которого М , вылетает в горизонтальном направлении снаряд массы m со скоростью v . Найти скорость V орудия после выстрела.

Решение . Все внешние силы, действующие на механическую систему орудие-снаряд, вертикальны. Значит, на основании следствия из теоремы об изменении количества движения системы, имеем: .

Количество движения механической системы до выстрела:

Количество движения механической системы после выстрела:

.

Приравнивая правые части выражений, получим, что

.

Знак «-» в полученной формуле указывает на то, что после выстрела орудие откатится в направлении, противоположном оси Ox .

ПРИМЕР 2. Струя жидкости плотностью вытекает со скоростью V из трубы с площадью поперечного сечения F и ударяется под углом о вертикальную стенку. Определить давление жидкости на стену.

РЕШЕНИЕ. Применим теорему об изменении количества движения в интегральной форме к объему жидкости массой m ударяющемуся о стену за некоторый промежуток времени t .

УРАВНЕНИЕ МЕЩЕРСКОГО

(основное уравнение динамики тела переменной массы)

В современной технике возникают случаи, когда масса точки и системы не остается постоянной в процессе движения, а изменяется. Так, например, при полете космических ракет, вследствие выбрасывания продуктов сгорания и отдельных ненужных частей ракет, изменение массы достигает 90-95% общей начальной величины. Но не только космическая техника может быть примером динамики движения переменной массы. В текстильной промышленности происходит значительное изменения массы различных веретен, шпуль, рулонов при современных скоростях работы станков и машин.

Рассмотрим главные особенности, связанные с изменением массы, на примере поступательного движения тела переменной массы. К телу переменной массы нельзя непосредственно применить основной закон динамики. Поэтому получим дифференциальные уравнения движения точки переменной массы, применяя теорему об изменении количества движения системы.

Пусть точка массой m+dm движется со скоростью . Затем происходит отрыв от точки некоторой частицы массой dm движущейся со скоростью .

Количество движения тела до отрыва частицы:

Количество движения системы, состоящей из тела и оторвавшейся частицы, после ее отрыва:

Тогда изменение количества движения:

Исходя из теоремы об изменении количества движения системы:

Обозначим величину - относительная скорость частицы:

Обозначим

Величину R называют реактивной силой. Реактивная сила является тягой двигателя, обусловленная выбросом газа из сопла.

Окончательно получим

-

Данная формула выражает основное уравнение динамики тела переменной массы (формула Мещерского). Из последней формулы следует, что дифференциальные уравнения движения точки переменной массы имеют такой же вид, как и для точки постоянной массы, кроме приложенных к точке дополнительно реактивной силы, обусловленной изменением массы.

Основное уравнение динамики тела переменной массы свидетельствует о том, что ускорение этого тела формируется не только за счет внешних сил, но и за счет реактивной силы.

Реактивная сила – это сила, родственная той, которую ощущает стреляющий человек - при стрельбе из пистолета она ощущается кистью руки; при стрельбе из винтовки воспринимается плечом.

Первая формула Циолковского (для одноступенчатой ракеты)

Пусть точка переменной массы или ракета движется прямолинейно под действием только одной реактивной силы. Так как для многих современных реактивных двигателей , где - максимально допускаемая конструкцией двигателя реактивная сила (тяга двигателя); - сила тяжести, действующая на двигатель, находящийся на земной поверхности. Т.е. изложенное позволяет составляющей в уравнении Мещерского пренебречь и к дальнейшему анализу принять это уравнение в форме: ,

Обозначим:

Запас топлива (при жидкостных реактивных двигателях - сухая масса ракеты (остающаяся её масса после выгорания всего топлива);

Масса отделившихся от ракеты частиц; рассматривается как переменная величина, изменяющаяся от до .

Запишем уравнение прямолинейного движения точки переменной массы в следующем виде вид

Так как формула для определения переменной массы ракеты

Следовательно, уравнения движения точки Беря интегралы от обеих частей получим

где - характеристическая скорость – это скорость, которую приобретает ракета под действием тяги после извержения из ракеты всех частиц (при жидкостных реактивных двигателях – после выгорания всего топлива).

Вынесенная за знак интеграла (что можно делать на основании известной из высшей математики теоремы о среднем) - это средняя скорость извергаемых из ракеты частиц.

(Фрагменты математической симфонии)

Связь импульса силы с основным уравнением ньютоновской динамики выражает теорема об изменении количества движения материальной точки.

Теорема. Изменение количества движения материальной точки за некоторый промежуток времени равно импульсу силы (), действующей на материальную точку за тот же промежуток времени. Математическое доказательство этой теоремы можно назвать фрагментом математической симфонии. Вот он.

Дифференциал количества движения материальной точки равен элементарному импульсу силы, действующей на материальную точку. Интегрируя выражение (128) дифференциала количества движения материальной точки, имеем

(129)

Теорема доказана и математики считают свою миссию законченной, а у инженеров, судьба которых - свято верить математикам, возникают вопросы при использовании доказанного уравнения (129). Но их прочно блокирует последовательность и красота математических действий (128 и 129), которые завораживают и побуждают назвать их фрагментом математической симфонии. Сколько поколений инженеров соглашались с математиками и трепетали перед таинственностью их математических символов! Но вот нашёлся инженер, несогласный с математиками, и задаёт им вопросы.

Уважаемые математики! Почему ни в одном из Ваших учебников по теоретической механике не рассматривается процесс применения Вашего симфонического результата (129) на практике, например, при описании процесса разгона автомобиля? Левая часть уравнения (129) предельно понятна. Автомобиль начинает разгон со скорости и завершает его, например, на скорости . Вполне естественно, что уравнение (129) становится таким

И сразу возникает первый вопрос: как же из уравнения (130) определить силу , под действием которой автомобиль разогнан до скорости 10м/с? Ответа на этот вопрос нет ни в одном из неисчислимых учебников по теоретической механике. Пойдём дальше. После разгона автомобиль начинает равномерное движение с достигнутой скоростью 10м/с. Какая же сила движет автомобиль????????? У меня ничего не остаётся, как краснеть вместе с математиками. Первый закон ньютоновской динамики утверждает, что при равномерном движении автомобиля на него не действуют никакие силы, а автомобиль, образно говоря, чихает на этот закон, расходует бензин и совершает работу, перемещаясь, например, на расстояние 100 км. А где же сила, совершившая работу по перемещению автомобиля на 100км? Симфоническое математическое уравнение (130) молчит, а жизнь продолжается и требует ответа. Начинаем искать его.

Поскольку автомобиль движется прямолинейно и равномерно, то сила, перемещающая его, постоянна по величине и направлению и уравнение (130) становится таким

(131)

Итак, уравнение (131) в данном случае описывает ускоренное движение тела. Чему же равна сила ? Как выразить её изменение с течением времени? Математики предпочитают обходить этот вопрос и оставляют его инженерам, полагая, что они должны искать ответ на этот вопрос. У инженеров остаётся одна возможность – учесть, что если после завершения ускоренного движения тела, наступает фаза равномерного движения, которое сопровождается под действием постоянной силы представить уравнение (131) для момента перехода от ускоренного к равномерному движению в таком виде

(132)

Стрелка в этом уравнении означает не результат интегрирования этого уравнения, а процесс перехода от его интегрального вида к упрощённому виду. Сила в этом уравнении эквивалентна усреднённой силе, изменившей количество движения тела от нуля до конечного значения . Итак, уважаемые, математики и физики-теоретики, отсутствие Вашей методики определения величины Вашего импульса вынуждает нас упрощать процедуру определения силы , а отсутствие методики определения времени действия этой силы вообще ставит нас в безвыходное положение и мы вынуждены использовать выражение для анализа процесса изменения количества движения тела. В результате получается, чем дольше будет действовать сила , тем больше её импульс . Это явно противоречит давно сложившимся представлениям о том, что импульс силы тем больше, чем меньше время его действия.

Обратим внимание на то, что изменение количества движения материальной точки (импульса силы) при ускоренном её движении происходит под действием ньютоновской силы и сил сопротивления движению, в виде сил, формируемых механическими сопротивлениями, и силой инерции. Но ньютоновская динамика в абсолютном большинстве задач игнорирует силу инерции, а Механодинамика утверждает, что изменение количества движения тела при его ускоренном движении происходит за счёт превышения величины ньютоновской силы над силами сопротивления движению, в том числе и над силой инерции.

При замедленном движении тела, например, автомобиля с выключенной передачей, ньютоновская сила отсутствует, и изменение количества движения автомобиля происходит за счёт превышения сил сопротивления движению над силой инерции, которая движет автомобиль при его замедленном движении .

Как же теперь вернуть результаты отмеченных «симфонических» математических действий (128) в русло причинно-следственных связей? Выход один – найти новое определение понятиям «импульс силы» и «ударная сила». Для этого разделим обе части уравнения (132) на время t. В результате будем иметь

. (133)

Обратим внимание на то, что выражение mV/t - скорость изменения количества движения (mV/t) материальной точки или тела. Если учесть, что V/t – ускорение, то mV/t - сила, изменяющая количество движения тела. Одинаковая размерность слева и с права знака равенства даёт нам право назвать силу F ударной силой и обозначить её символом , а импульс S - ударным импульсом и обозначить его символом . Из этого следует и новое определение ударной силы. Ударная сила , действующая на материальную точку или тело, равна отношению изменения количества движения материальной точки или тела ко времени этого изменения.

Обратим особое внимание на то, что в формировании ударного импульса (134) участвует только ньютоновская сила, которая изменила скорость автомобиля от нулевого значения до максимального - , поэтому уравнение (134) всецело принадлежит ньютоновской динамике. Поскольку величину скорости фиксировать экспериментально значительно легче, чем - ускорения, то формула (134) очень удобна для расчётов.

Из уравнения (134) следует такой необычный результат.

Обратим внимание на то, что согласно новым законам механодинамики генератором импульса силы при ускоренном движении материальной точки или тела является ньютоновская сила . Она формирует ускорение движения точки или тела, при котором автоматически возникает сила инерции, направленная противоположно ньютоновской силе и ударная ньютоновская сила должна преодолевать действие силы инерции, поэтому сила инерции должна быть представлена в балансе сил в левой части уравнения (134). Так как сила инерции равна массе точки или тела, умноженной на замедление , которое она формирует, то уравнение (134) становится таким

(136)

Уважаемые математики! Видите, какой вид приняла математическая модель, описывающая ударный импульс, который ускоряет движение ударяемого тела от нулевой скорости до максимальной V (11). Теперь проверим её работу в определении ударного импульса , который равен ударной силе , выстрелившей 2-й энергоблок СШГ (рис. 120), а Вам оставим Ваше бесполезное уравнение (132). Чтобы не усложнять изложение, мы оставим пока формулу (134) в покое и воспользуемся формулами, дающими усреднённые значения сил. Видите, в какое положение Вы ставите инженера, стремящегося решить конкретную задачу.

Начнём с динамики Ньютона. Эксперты установили, что 2-й энергоблок поднялся на высоту 14м. Поскольку он поднимался в поле силы тяжести, то на высоте h=14м его потенциальная энергия оказалась равной

а средняя кинетическая энергия была равна

Рис. 120. Фото машинного зала до катастрофы

Из равенства кинетической (138) и потенциальной (137) энергий следует средняя скорость подъёма энергоблока (рис. 121, 122)

Рис. 121. Фотон машинного зала после катастрофы

Согласно новым законам механодинамики подъём энергоблока состоял из двух фаз (рис. 123): первая фаза ОА - ускоренный подъём и вторая фаза АВ – замедленный подъём , , .

Время и расстояния их действия, примерно, равны (). Тогда кинематическое уравнение ускоренной фазы подъёма энергоблока запишется так

. (140)

Рис. 122. Вид колодца энергоблока и самого энергоблока после катастрофы

Закон изменения скорости подъёма энергоблока в первой фазе имеет вид

. (141)

Рис. 123. Закономерность изменения скорости V полёта энергоблока

Подставляя время из уравнения (140) в уравнение (141), имеем

. (142)

Время подъёма блока в первой фазе определится из формулы (140)

. (143)

Тогда общее время подъёма энергоблока на высоту 14м будет равно . Масса энергоблока и крышки равна 2580 тонн. Согласно динамике Ньютона сила , поднимавшая энергоблок, равна

Уважаемые математики! Следуем Вашим симфоническим математическим результатам и записываем Вашу формулу (129), следующую из динамики Ньютона, для определения ударного импульса, выстрелившего 2-й энергоблок

и задаём элементарный вопрос: как определить время действия ударного импульса, выстрелившего 2-й энергоблок????????????

Уважаемые!!! Вспомните, сколько мела исписали на учебных досках поколения Ваших коллег, заумно уча студентов, как определять ударный импульс и никто не пояснил, как определять время действия ударного импульса в каждом конкретном случае. Вы скажете время действия ударного импульса равно интервалу времени изменения скорости энергоблока от нуля до, будем считать, максимального значения 16,75 м/с (139). Оно в формуле (143) и равно 0,84 с. Соглашаемся пока с Вами и определяем усреднённую величину ударного импульса

Сразу возникает вопрос: а почему величина ударного импульса (146) меньше ньютоновской силы 50600тонн? Ответа, у Вас, уважаемые математики, нет . Пойдём дальше.

Согласно динамике Ньютона, главная сила, которая сопротивлялась подъёму энергоблока, - сила тяжести . Так как эта сила направлена против движения энергоблока, то она генерирует замедление, которое равно ускорению свободного падения . Тогда сила гравитации, действующая на летящий вверх энергоблок, равна

Других сил, препятствовавших действию ньютоновской силы 50600 тонн (144), динамика Ньютона не учитывает, а механодинамика утверждает, что подъёму энергоблока сопротивлялась и сила инерции, равная

Сразу возникает вопрос: как найти величину замедления движению энергоблока? Динамика Ньютона молчит, а механодинамика отвечает: в момент действия ньютоновской силы, поднимавшей энергоблок, ей сопротивлялись: сила тяжести и сила инерции, поэтому уравнение сил, действовавших на энергоблок в этот момент, записывается так .