Стохастическая зависимость. Задача математического моделирования (аппроксимации). Стохастическая модель литературного произведения


Принципиальная идея, с которой сталкивается ис-следователь социально-экономических процессов и явлений, - это понимание природы взаимосвязей между экономическими переменными. Формирующийся на рынке спрос на определенный товар рассматривается как функция цены, доходность активов зависит от степени риска вложений, потребительские расходы могут быть функцией от доходов.
В процессе статистического анализа и прогнозирования социально-экономических явлений необходимо количественно описать самые существенные взаимосвязи. Для достоверного отражения сущности и характера явле-ний и процессов следует выявлять причинно-следственные отношения. Причинная связь характеризуется временной последовательностью причины и следствия: причина всегда предшествует следствию. Однако для корректного понимания следует исключать совпадения событий, не имеющих причинной взаимосвязи.
Многие социально-экономические явления представляют результат одновременно и совокупно действующих причин. В таких случаях отделяются главные причины от второстепенных, несущественных.
Между явлениями различают два вида зависимостей: функциональную, или жестко детерминированную, и статистическую, или стохастически детерминированную. При функциональной зависимости каждому значению независимой переменной х однозначно соответствует вполне определенное значение зависимой переменной у. Эту зависимость можно описать в виде равенства у = f(x) . Приме- ром такой зависимости могут быть законы механики, справедливые для каждой отдельно взятой единицы совокупности без случайных отклонений.
Статистическая, или стохастическая зависимость, проявляется только в массовых явлениях, при большом числе единиц совокупности. При стохастической за-висимости для заданных значений независимой переменной х можно указать ряд значений у, случайно рассеянных в интервале. Каждому фиксированному значению аргумента соответствует определенное статистическое распределение значений функции. Это связано с тем, что зависимая переменная, кроме выделенной переменной х, подвержена влиянию также других неконтролируемых или неучтенных факторов, а также с тем, что накладываются ошибки измерения. (2, с. 12). Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью. Появляющиеся значения зависимой переменной являются реализациями случайной величины.
Односторонняя стохастическая зависимость одной случайной переменной от другой или нескольких других случайных переменных рассматривается как регрессия. Функция, при помощи которой выражается односторонняя стохастическая зависимость, называется функцией регрессии или просто регрессией.
Существует различие между функциональной зависимостью и регрессией. Кроме того, что переменная х при функциональной зависимости^ =f(x) полностью определяет значение функции^, функция обратима, т.е. существует обратная функция х = f(у). Функция регрессии таким свойством не обладает. Только в предельном случае, когда стохастическая зависимость переходит в функциональную зависимость, из одного уравнения регрессии можно перейти в другое.
Формализация вида уравнения регрессии неадекватна целям, связанным с измерениями в экономике и с анализом тех или иных форм зависимостей между пере-менными. Решение подобных задач становится возможным в результате введения в экономические соотношения стохастического члена:
При изучении зависимостей следует иметь в виду, что функция регрессии только формально устанавливает соответствие между переменными, в то время как они могут не состоять в причинно-следственных отношениях. В этом случае могут возникнуть ложные регрессии вследствие случайных совпадений в вариациях переменных, которые не имеют содержательного смысла. Поэтому обязательным этапом перед подбором уравнения регрессии является качественный анализ зависимости между независимой переменной х и зависимой переменной у, основанный на предварительных гипотезах.

Между различными явлениями и их признаками необходимо прежде всего выделить 2типа связей: функциональную (жестко детерминированную) и статистическую (стохастически детерминированную).

В соответствии с жестко детерминистическим представлением о функционировании экономических систем необходимость и закономерность однозначно проявляются в каждом отдельном явлении, то есть любое действие вызывает строго определенный результат; случайными (непредвиденными заранее) воздействиями при этом пренебрегают. Поэтому при заданных начальных условиях состояние такой системы может быть определено с вероятностью, равной 1. Разновидностью такой закономерности является функциональная связь.

Связь признака у с признакомх называется функциональной, если каждому возможному значению независимого признаках соответствует 1 или несколько строго определенных значений зависимого признакау . Определение функциональной связи может быть легко обобщено для случая многих признаковх 1 2 …х n .

Характерной особенностью функциональных связей является то, что в каждом отдельном случае известен полный перечень факторов, определяющих значение зависимого (результативного) признака, а также точный механизм их влияния, выраженный определенным уравнением.

Функциональную связь можно представить уравнением:

y i = (x i ) ,

где y i - результативный признак (i = 1, … , n );

f(x i ) - известная функция связи результативного и факторного признаков;

x i - факторный признак.

В реальной общественной жизни ввиду неполноты информации жестко детерминированной системы, может возникнуть неопределенность, из-за которой эта система по своей природе должна рассматриваться как вероятностная, при этом связь между признаками становится стахостической.

Стахостическая связь – это связь между величинами, при которой одна из них, случайная величинау , реагирует на изменение другой величиных или других величинх 1 2 …х n (случайных или неслучайных) изменением закона распределения. Это обуславливается тем, что зависимая переменная (результативный признак), кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых (случайных) факторов, а также некоторых неизбежных ошибок измерения переменных. Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью.

Характерной особенностью стахостических связей является то, что они проявляются во всей совокупности, а не в каждой ее единице. Причём неизвестен ни полный перечень факторов, определяющих значение результативного признака, ни точный механизм их функционирования и взаимодействия с результативным признаком. Всегда имеет место влияние случайного. Появляющиеся различные значения зависимой переменной – реализация случайной величины.

Модель стохастической связи может быть представлена в общем виде уравнением:

ŷ i = (x i ) + i ,

где ŷ i - расчётное значение результативного признака;

f(x i ) - часть результативного признака, сформировавшаяся под воздействием учтенных известных факторных признаков(одного или множества), находящихся в стахостической связи с признаком;

i - часть результативного признака, возникшая в следствие действия неконтролируемых или неучтенных факторов, а также измерения признаков, неизбежно сопровождающегося некоторыми случайными ошибками.

Проявление стохастических связей подвержено действию закона больших чисел : лишь в достаточно большом числе единиц индивидуальные особенности сгладятся, случайности взаимопогасятся, и зависимость, если она имеет существенную силу, проявится достаточно отчётливо.

Корреляционная связь существует там, где взаимосвязанные явления характеризуются только случайными величинами. При такой связи среднее значение (математическое ожидание) случайной величины результативного признакау закономерно изменяется в зависимости от изменения другой величиных или других случайных величинх 1 2 …х n . Корреляционная связь проявляется не в каждом отдельном случае, а во всей совокупности в целом. Только при достаточно большом количестве случаев каждому значению случайного признаках будет соответствовать распределение средних значений случайного признакау . Наличие корреляционных связей присуще многим общественным явлениям.

Корреляционная связь – понятие более узкое, чем стохастическая связь. Последняя может отражаться не только в изменении средней величины, но и в вариации одного признака в зависимости от другого, то есть любой другой характеристики вариации. Таким образом, корреляционная связь является частным случаем стохастической связи.

Прямые и обратные связи. В зависимости от направления действия, функциональные и стахостические связи могут быть прямые и обратные. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора, то есть с увеличением факторного признака увеличивается и результативный, и, наоборот, с уменьшением факторного признака уменьшается и результативный признак. В противном случае между рассматриваемыми величинами существуют обратные связи. Например, чем выше квалификация рабочего (разряд), тем выше уровень производительности труда – прямая связь. А чем выше производительность труда, тем ниже себестоимость единицы продукции – обратная связь.

Прямолинейные и криволинейные связи. По аналитическому выражению (форме) связи могут быть прямолинейными и криволинейными. При прямолинейной связи с возрастанием значения факторного признака происходит непрерывное возрастание (или убывание) значений результативного признака. Математически такая связь представляется уравнением прямой, а графически – прямой линией. Отсюда ее более короткое название – линейная связь. При криволинейных связях с возрастанием значения факторного признака возрастание (или убывание) результативного признака происходит неравномерно, или же направление его изменения меняется на обратное. Геометрически такие связи представляются кривыми линиями (гиперболой, параболой и т.д.).

Однофакторные и многофакторные связи. По количеству факторов, действующих на результативный признак, связи различаются: однофакторные (один фактор) и многофакторные (два и более факторов). Однофакторные (простые) связи обычно называются парными (т.к. рассматривается пара признаков). Например, корреляционная связь между прибылью и производительностью труда. В случае многофакторной (множественной) связи имеют в виду, что все факторы действуют комплексно, то есть одновременно и во взаимосвязи. Например, корреляционная связь между производительностью труда и уровнем организации труда, автоматизации производства, квалификации рабочих, производственным стажем, простоями и другими факторными признаками. С помощью множественной корреляции можно охватить весь комплекс факторных признаков и объективно отразить существующие множественные связи.

Зачастую теорию вероятностей воспринимают как раздел математики, который занимается «исчислением вероятностей».

И всё это исчисление фактически сводится к простой формуле:

«Вероятность любого события равна сумме вероятностей входящих в него элементарных событий ». Практически эта формула повторяет, привычное нам с детства, «заклинание»:

«Масса предмета равна сумме масс составляющих его частей ».

Здесь мы будем обсуждать не столь тривиальные факты из теории вероятностей. Речь пойдёт, в первую очередь, о зависимых и независимых событиях.

Важно понять, что одинаковые термины в различных разделах математики могут иметь совершенно различный смысл.

Например, когда говорят, что площадь круга S зависит от его радиуса R , то, конечно, имеется в виду функциональная зависимость

Совсем другой смысл у понятий зависимость и независимость в теории вероятностей.

Знакомство с этими понятиями начнём с простого примера.

Представьте, что вы проводите эксперимент с бросанием игральной кости в этой комнате, а ваш коллега в соседней комнате тоже подбрасывает монету. Пусть вас интересует событие А – выпадение «двойки» у вас и событие В – выпадение «решки» у вашего коллеги. Здравый смысл подсказывает: эти события независимы!

Хотя мы ещё не ввели понятия зависимости/независимости, но интуитивно ясно, что любое разумное определение независимости должно быть устроено так, чтобы эти события определялись как независимые.

Теперь обратимся к другому эксперименту. Бросается игральная кость, событие А – выпадение «двойки», событие В – выпадение нечётного числа очков. Считая, что кость симметрична, можно сразу сказать, что Р(А) = 1/6. А теперь представьте, что вам сообщают: «В результате проведенного эксперимента произошло событие В, выпало нечётное число очков». Что теперь можно сказать о вероятности события А? Понятно, что теперь эта вероятность стала равна нулю.

Для нас самое важное, что она изменилась .

Возвращаясь к первому примеру, можно сказать, информация о том, что в соседней комнате произошло событие В никак не скажется на ваших представлениях о вероятности события А. Эта вероятность не изменится от того, что вы что-то узнали о событии В.

Мы приходим к естественному и чрезвычайно важному выводу –

если информация о том, что событие В произошло меняет вероятность события А, то события А и В следует считать зависимыми, а если не меняет – то независимыми.

Этим соображениям следует придать математическую форму, определить зависимость и независимость событий с помощью формул.

Будем исходить из следующего тезиса: «Если А и В – зависимые события, то в событии А содержится информация о событии В, а в событии В содержится информация о событии А». А как узнать – содержится или нет? Ответ на этот вопрос даёт теория информации .

Из теории информации нам нужна только одна формула, которая позволяет вычислить количество взаимной информации I(A, B) для событий А и В

Не будем вычислять количество информации для различных событий или подробно обсуждать эту формулу.

Для нас важно, что если

то количество взаимной информации между событиями А и В равно нулю − события А и В независимы . Если же

то количество взаимной информации − события А и В зависимы .

Обращение к понятию информации носит здесь вспомогательный характер и, как нам кажется, позволяет сделать более осязаемыми понятии зависимости и независимости событий.

В теории вероятностей зависимость и независимость событий описывается более формально.

В первую очередь нам понадобится понятие условной вероятности .

Условная вероятность события А при условии, что событие В произошло (Р(В) ≠0), называется величина Р(А|В), вычисляемая по формуле

.

Следуя духу нашего похода к пониманию зависимости и независимости событий можно ожидать, что условная вероятность будет обладать следующим свойством: если события А и В независимы , то

Это означает, что информация о том, что событие В произошло никак не влияет на вероятность события А.

Так оно и есть!

Если события А и В независимы, то

Имеем для независимых событий А и В

и

Пусть требуется исследовать зависимость причем обе величины их измеряются в одних и тех же экспериментах. Для этого проводят серию экспериментов при разных значениях стараясь сохранить прочие условия эксперимента неизменными.

Измерение каждой величины содержит случайные ошибки (систематические ошибки здесь рассматривать не будем); следовательно, эти величины являются случайными.

Закономерная связь случайных величин называется стохастической. Будем рассматривать две задачи:

а) установить, существует ли (с определенной вероятностью) зависимость от или величина от не зависит;

б) если зависимость существует, описать ее количественно.

Первую задачу называют дисперсионным анализом, а если рассматривается функция многих переменных - то многофакторным дисперсионным анализом. Вторую задачу называют анализом регрессии. Если случайные ошибки велики, то они могут маскировать искомую зависимость и выявить ее бывает нелегко.

Таким образом, достаточно рассмотреть случайную величину зависящую от как от параметра. Математическое ожидание этой величины зависит от эта зависимость является искомой и называется законом регрессии.

Дисперсионный анализ. Проведем при каждом значении небольшую серию измерений и определим Рассмотрим два способа обработки этих данных, позволяющих исследовать, имеется ли значимая (т. е. с принятой доверительной вероятностью) зависимость z от

При первом способе вычисляют стандарты выборки единичного измерения по каждой серии отдельно и по всей совокупности измерений:

где полное число измерений, а

являются средними значениями соответственно по каждой серии и по всей совокупности измерений.

Сравним дисперсию совокупности измерений с дисперсиями отдельных серий . Если окажется, что при выбранном уровне достоверности можно считать для всех i, то зависимость z от имеется.

Если достоверного превышения нет, то зависимость не поддается обнаружению (при данной точности эксперимента и принятом способе обработки).

Дисперсии сравнивают по критерию Фишера (30). Поскольку стандарт s определен по полному числу измерений N, которое обычно достаточно велико, то почти всегда можно пользоваться коэффициентами Фишера приведенными в таблице 25.

Второй способ анализа заключается в сравнении средних при разных значениях между собой. Величины являются случайными и независимыми, причем их собственные стандарты выборки равны

Поэтому их сравнивают по схеме независимых измерений, описанной в п. 3. Если различия значимы, т. е. превышают доверительный интервал, то факт зависимости от установлен; если различия всех 2 незначимы, то зависимость не поддается обнаружению.

Многофакторный анализ имеет некоторые особенности. Величину целесообразно измерять в узлах прямоугольной сетки чтобы удобнее было исследовать зависимость от одного аргумента, фиксируя другой аргумент. Проводить серию измерений в каждом узле многомерной сетки слишком трудоемко. Достаточно провести серии измерений в нескольких узлах сетки, чтобы оценить дисперсию единичного измерения; в остальных узлах можно ограничиться однократными измерениями. Дисперсионный анализ при этом проводят по первому способу.

Замечание 1. Если измерений много, то в обоих способах отдельные измерения или серии могут с заметной вероятностью довольно сильно отклониться от своего математического ожидания. Это надо учитывать, выбирая доверительную вероятность достаточно близкой к 1 (как это делалось в при установлении пределов, отделяющих допустимые случайные ошибки от грубых).

Анализ регрессии. Пусть дисперсионный анализ указал, что зависимость z от есть. Как ее количественно описать?

Для этого аппроксимируем искомую зависимость некоторой функцией Оптимальные значения параметров найдем методом наименьших квадратов, решая задачу

где - веса измерений, выбираемые обратно пропорционально квадрату погрешности измерения в данной точке (т. е. ). Эта задача была разобрана в главе II, § 2. Остановимся здесь лишь на тех особенностях, которые вызваны присутствием больших случайных ошибок.

Вид подбирают либо из теоретических соображений о природе зависимости либо формально, сравнивая график с графиками известных функций. Если формула подобрана из теоретических соображений и правильно (с точки зрения теории) передает асимптотику то обычно она позволяет не только неплохо аппроксимировать совокупность экспериментальных данных, но и экстраполировать найденную зависимость на другие диапазоны значений Формально подобранная функция может удовлетворительно описывать эксперимент, но редко пригодна для экстраполяции.

Проще всего решить задачу (34), если является алгебраическим многочленом Однако такой формальный выбор функции редко оказывается удовлетворительным. Обычно хорошие формулы зависят от параметров нелинейно (трансцедентная регрессия). Трансцедентную регрессию наиболее удобно строить, подбирая такую выравнивающую замену переменных чтобы зависимость была почти линейной (см. гл. II, § 1, п. 8). Тогда ее нетрудно аппроксимировать алгебраическим многочленом: .

Выравнивающую замену переменных ищут, используя теоретические соображения и учитывая асимптотику Дальше будем считать, что такая замена уже сделана.

Замечание 2. При переходе к новым переменным задача метода наименьших квадратов (34) принимает вид

где новые веса связаны с исходными соотношениями

Поэтому, даже если в исходной постановке (34) все измерения имели одинаковую точность, так что то для выравнивающих переменных веса не будут одинаковыми.

Корреляционный анализ. Надо проверить, действительно ли замена переменных была выравнивающей, т. е. близка ли зависимость к линейной. Это можно сделать, вычислив коэффициент парной корреляции

Нетрудно показать, что всегда выполняется соотношение

Если зависимость строго линейная (и не содержит случайных ошибок), то или в зависимости от знака наклона прямой. Чем меньше , тем менее зависимость похожа на линейную. Поэтому, если , а число измерений N достаточно велико, то выравнивающие переменные выбраны удовлетворительно.

Подобные заключения о характере зависимости по коэффициентам корреляции называют корреляционным анализом.

При корреляционном анализе не требуется, чтобы в каждой точке проводилась серия измерений. Достаточно в каждой точке сделать одно измерение, но зато взять побольше точек на исследуемой кривой, что часто делают в физических экспериментах.

Замечание 3. Существуют критерии близости , позволяющие указать, является ли зависимость практически линейной. Мы на них не останавливаемся, поскольку далее будет рассмотрен выбор степени аппроксимирующего многочлена.

Замечание 4. Соотношение указывает на отсутствие линейной зависимости но не означает отсутствия какой-либо зависимости. Так, если на отрезке - то

Оптимальная степень многочлен а. Подставим в задачу (35) аппроксимирующий многочлен, степени :

Тогда оптимальные значения параметров удовлетворяют системе линейных уравнений (2.43):

и найти их нетрудно. Но как выбрать степень многочлена?

Для ответа на этот вопрос вернемся к исходным переменным и вычислим дисперсию аппроксимационной формулы с найденными коэффициентами. Несмещенная оценка этой дисперсии такова

Очевидно, при увеличении степени многочлена дисперсия (40) будет убывать: чем больше взято коэффициентов, тем точней можно аппроксимирозать экспериментальные точки.

зависимость между случайными величинами, при которой изменение закона распределения одной из них происходит под влиянием изменения другой.


Смотреть значение Зависимость Стохастическая в других словарях

Зависимость — подневольность
подвластность
подчиненность
Словарь синонимов

Зависимость Ж. — 1. Отвлеч. сущ. по знач. прил.: зависимый (1). 2. Обусловленность чего-л. какими-л. обстоятельствами, причинами и т.п.
Толковый словарь Ефремовой

Зависимость — -и; ж.
1. к Зависимый. Политическая, экономическая, материальная з. З. от чего-л. тяготит, гнетёт меня. З. теории от практики. Жить в зависимости. Крепостная з. (состояние........
Толковый словарь Кузнецова

Зависимость — - состояние экономического субъекта, при котором его существование и деятельность зависят от материальной и финансовой поддержки или взаимодействия с другими субъектами.
Юридический словарь

Зависимость Фишера — - зависимость, устанавливающая, что рост уровня ожидаемой инфляции имеет тенденцию поднимать номинальные процентные ставки. В наиболее строгом варианте - зависимость........
Юридический словарь

Линейная Зависимость — - экономико-математические модели в виде формул, уравнений, в которых экономические величины, параметры (аргумент и функция) связаны между собой линейной функцией. Простейший........
Юридический словарь

Лекарственная Зависимость — синдром, наблюдающийся при нарко- или токсикоманиях и характеризующийся патологической потребностью в приеме психотропного средства с тем, чтобы избежать развития........
Большой медицинский словарь

Лекарственная Зависимость Психическая — Л. з. без явлений абстиненции в случае прекращения приема лекарственного средства.
Большой медицинский словарь

Лекарственная Зависимость Физическая — Л. з. с явлениями абстиненции в случае прекращения приема лекарственного средства или после введения его антагонистов.
Большой медицинский словарь

Крепостная Зависимость — личная, поземельная и административнаязависимость крестьян от землевладельцев в России (11 в. - 1861).Юридически оформлена в кон. 15 - 17 вв. крепостным правом.

Линейная Зависимость — соотношение вида С1u1+С2u2+... +Сnun?0, где С1, С2,..., Сn - числа, из которых хотя бы одно? 0, а u1, u2, ..., un -какие-либо математические объекты, напр. векторы или функции.
Большой энциклопедический словарь

Крепостная Зависимость — - личная, поземельная и административная зависимость крестьян от феодалов в России XI в. -1861 г. Юридически оформлена в конце XV-XVII вв. крепостным правом.
Исторический словарь

Крепостная Зависимость — личная зависимость крестьян в феод. об-ве от феодалов. См. Крепостное право.
Советская историческая энциклопедия

Линейная Зависимость — - см. в статье Линейная независимость.
Математическая энциклопедия

Ляпунова Стохастическая Функция — неотрицательная функция V(t, х), для к-рой пара (V(t, X(t)), Ft) - супермартингал для нек-рого случайного процесса X(t), Ft есть s-алгебра событий, порожденных течением процесса Xдо........
Математическая энциклопедия

Стохастическая Аппроксимация — метод решения класса задач статистич. оценивания, в к-ром новое значение оценки представляет собой поправку к уже имеющейся оценке, основанную на новом наблюдении.........
Математическая энциклопедия

Стохастическая Геометрия — математическая дисциплина, изучающая взаимоотношения между геометрией и теорией вероятностей. С. г. развилась из классич. интегральной геометрии и задач о геометрических........
Математическая энциклопедия

Стохастическая Зависимость — (вероятностная, статистическая) - зависимость между случайными величинами, к-рая выражается в изменении условных распределений любой из величин при изменении значений........
Математическая энциклопедия

Стохастическая Игра — - динамическая игра, у к-рой переходная функция распределения не зависит от предыстории игры, т. е. С. и. были впервые определены Л. Шепли , к-рый рассматривал антагонистич.........
Математическая энциклопедия

Стохастическая Матрица — квадратная (возможно, бесконечная) матрица с неотрицательными элементами такими, что при любом i. Множество всех С. м. n-го порядка представляет собой выпуклую оболочку........
Математическая энциклопедия

Стохастическая Непрерывность — свойство выборочных функций случайного процесса. Случайный процесс X(t), заданный на нек-ром множестве наз. стохастически непрерывным на этом множестве, если для любого........
Математическая энциклопедия

Стохастическая Неразличимость — свойство двух случайных процессов и означающее, что случайное множество является пренебрежимым, т. е. вероятность множества что равна нулю. Если Xи Yстохастически........
Математическая энциклопедия

Стохастическая Ограниченность — ограниченность по вероятности,- свойство случайного процесса X(t), к-рое выражается условием: для произвольного существует такое C>0, что при всех А. В. Прохоров.
Математическая энциклопедия

Стохастическая Последовательность — последовательность случайных величин заданная на измеримом пространстве с выделенным на нем неубывающим семейством -алгебр обладающих свойством согласованности........
Математическая энциклопедия

Стохастическая Сходимость — тоже, что сходимость по вероятности.
Математическая энциклопедия

Стохастическая Эквивалентность — отношение эквивалентности между случайными величинами, различающимися лишь на множестве нулевой вероятности. Точнее, случайные величины Х 1 и Х 2. заданные на одном........
Математическая энциклопедия

Алкогольная Зависимость — Алкоголь является наркотическим веществом, обсуждение см. в статье наркотическая зависимость.
Психологическая энциклопедия

Галлюциногенная Зависимость — Лекарственная зависимость, при которой лекарствами являются галлюциногены.
Психологическая энциклопедия

Зависимость — (Dependence). Положительное качество, способствующее здоровому психологическому развитию и росту человека.
Психологическая энциклопедия

Зависимость (dependence), Зависимость Лекарственная — (drug dependence) - физические и/или психологические эффекты, возникающие в результате привыкания к определенным лекарственным веществам; характеризуются компульсивным побуждением........
Психологическая энциклопедия