Случайные величины. Дискретная случайная величина.Математическое ожидание. Нормальный закон распределения вероятностей Законы распределения случайной величины плотность распределения

Во многих задачах, связанных с нормально распределенными случайными величинами, приходится определять вероятность попадания случайной величины , подчиненной нормальному закону с параметрами , на участок от до . Для вычисления этой вероятности воспользуемся общей формулой

где - функция распределения величины .

Найдем функцию распределения случайной величины , распределенной по нормальному закону с параметрами . Плотность распределения величины равна:

. (6.3.2)

Отсюда находим функцию распределения

. (6.3.3)

Сделаем в интеграле (6.3.3) замену переменной

и приведем его к виду:

(6.3.4)

Интеграл (6.3.4) не выражается через элементарные функции, но его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения или (так называемый интеграл вероятностей), для которого составлены таблицы. Существует много разновидностей таких функций, например:

;

и т.д. Какой из этих функций пользоваться – вопрос вкуса. Мы выберем в качестве такой функции

. (6.3.5)

Нетрудно видеть, что эта функция представляет собой не что иное, как функцию распределения для нормально распределенной случайной величины с параметрами .

Условимся называть функцию нормальной функцией распределения. В приложении (табл. 1) приведены таблицы значений функции .

Выразим функцию распределения (6.3.3) величины с параметрами и через нормальную функцию распределения . Очевидно,

. (6.3.6)

Теперь найдем вероятность попадания случайной величины на участок от до . Согласно формуле (6.3.1)

Таким образом, мы выразили вероятность попадания на участок случайной величины , распределенной по нормальному закону с любыми параметрами, через стандартную функцию распределения , соответствующую простейшему нормальному закону с параметрами 0,1. Заметим, что аргументы функции в формуле (6.3.7) имеют очень простой смысл: есть расстояние от правого конца участка до центра рассеивания, выраженное в средних квадратических отклонениях; - такое же расстояние для левого конца участка, причем это расстояние считается положительным, если конец расположен справа от центра рассеивания, и отрицательным, если слева.

Как и всякая функция распределения, функция обладает свойствами:

3. - неубывающая функция.

Кроме того, из симметричности нормального распределения с параметрами относительно начала координат следует, что

Пользуясь этим свойством, собственно говоря, можно было бы ограничить таблицы функции только положительными значениями аргумента, но, чтобы избежать лишней операции (вычитание из единицы), в таблице 1 приложения приводятся значения как для положительных, так и для отрицательных аргументов.

На практике часто встречается задача вычисления вероятности попадания нормально распределенной случайной величины на участок, симметричный относительно центра рассеивания . Рассмотрим такой участок длины (рис. 6.3.1). Вычислим вероятность попадания на этот участок по формуле (6.3.7):

Учитывая свойство (6.3.8) функции и придавая левой части формулы (6.3.9) более компактный вид, получим формулу для вероятности попадания случайной величины, распределенной по нормальному закону на участок, симметричный относительно центра рассеивания:

. (6.3.10)

Решим следующую задачу. Отложим от центра рассеивания последовательные отрезки длиной (рис. 6.3.2) и вычислим вероятность попадания случайной величины в каждый из них. Так как кривая нормального закона симметрична, достаточно отложить такие отрезки только в одну сторону.

По формуле (6.3.7) находим:

(6.3.11)

Как видно из этих данных, вероятности попадания на каждый из следующих отрезков (пятый, шестой и т.д.) с точностью до 0,001 равны нулю.

Округляя вероятности попадания в отрезки до 0,01 (до 1%), получим три числа, которые легко запомнить:

0,34; 0,14; 0,02.

Сумма этих трех значений равна 0,5. Это значит, что для нормально распределенной случайной величины все рассеивания (с точностью до долей процента) укладывается на участке .

Это позволяет, зная среднее квадратическое отклонение и математическое ожидание случайной величины, ориентировочно указать интервал её практически возможных значений. Такой способ оценки диапазона возможных значений случайной величины известен в математической статистике под названием «правило трех сигма». Из правила трех сигма вытекает также ориентировочный способ определения среднего квадратического отклонения случайной величины: берут максимальное практически возможное отклонение от среднего и делят его на три. Разумеется, этот грубый прием может быть рекомендован, только если нет других, более точных способов определения .

Пример 1. Случайная величина , распределенная по нормальному закону, представляет собой ошибку измерения некоторого расстояния. При измерении допускается систематическая ошибка в сторону завышения на 1,2 (м); среднее квадратическое отклонения ошибки измерения равно 0,8 (м). Найти вероятность того, что отклонение измеренного значения от истинного не превзойдет по абсолютной величине 1,6 (м).

Решение. Ошибка измерения есть случайная величина , подчиненная нормальному закону с параметрами и . Нужно найти вероятность попадания этой величины на участок от до . По формуле (6.3.7) имеем:

Пользуясь таблицами функции (приложение, табл. 1), найдем:

; ,

Пример 2. Найти ту же вероятность, что и в предыдущем примере, но при условии, что систематической ошибки нет.

Решение. По формуле (6.3.10), полагая , найдем:

.

Пример 3. По цели, имеющей вид полосы (автострада), ширина которой равна 20 м, ведется стрельба в направлении, перпендикулярном автостраде. Прицеливание ведется по средней линии автострады. Среднее квадратическое отклонение в направлении стрельбы равно м. Имеется систематическая ошибка в направлении стрельбы: недолет 3 м. Найти вероятность попадания в автостраду при одном выстреле.

Функция распределения в этом случае согласно (5.7), примет вид:

где: m – математическое ожидание, s– среднеквадратическое отклонение.

Нормальное распределение называют еще гауссовским по имени немецкого математика Гаусса . Тот факт, что случайная величина имеет нормальное распределение с параметрами: m,, обозначают так: N (m,s), где: m =a =M ;

Достаточно часто в формулах математическое ожидание обозначают через а . Если случайная величина распределена по закону N(0,1), то она называется нормированной или стандартизированной нормальной величиной. Функция распределения для нее имеет вид:

.

График плотности нормального распределения, который называют нормальной кривой или кривой Гаусса, изображен на рис.5.4.

Рис. 5.4. Плотность нормального распределения

Определение числовых характеристик случайной величины по её плотности рассматривается на примере.

Пример 6 .

Непрерывная случайная величина задана плотностью распределения:.

Определить вид распределения, найти математическое ожидание M(X) и дисперсию D(X).

Сравнивая заданную плотность распределения с (5.16) можно сделать вывод, что задан нормальный закон распределения с m =4. Следовательно, математическое ожидание M(X)=4, дисперсия D(X)=9.

Среднее квадратическое отклонение s=3.

Функция Лапласа, имеющая вид:

,

связана с функцией нормального распределения (5.17), cоотношением:

F 0 (x) = Ф(х) + 0,5.

Функции Лапласа нечётная.

Ф(-x )=-Ф(x ).

Значения функции Лапласа Ф(х) табулированы и берутся из таблицы по значению х (см. Приложение 1).

Нормальное распределение непрерывной случайной величины играет важную роль в теории вероятностей и при описании реальности, имеет очень широкое распространение в случайных явлениях природы. На практике очень часто встречаются случайные величины, образующиеся именно в результате суммирования многих случайных слагаемых. В частности, анализ ошибок измерения показывает, что они являются суммой разного рода ошибок. Практика показывает, что распределение вероятностей ошибок измерения близко к нормальному закону.

С помощью функции Лапласа можно решать задачи вычисления вероятности попадания в заданный интервал и заданного отклонения нормальной случайной величины.

Нормальный закон распределения наиболее часто встречается на практике. Главная особенность, выделяющая его среди других законов, состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях (см. гл. 6).

Определение. Непрерывная случайная величина X имеет нормальный закон распределения (закон Гаусса) с параметрами а и а 2 , если ее плотность вероятности имеет вид

Термин «нормальный» не совсем удачный. Многие признаки подчиняются нормальному закону, например, рост человека, дальность полета снаряда и т.п. Но если какой-либо признак подчиняется другому, отличному от нормального, закону распределения, то это вовсе не говорит о «ненормальности» явления, связанного с этим признаком.

Кривую нормального закона распределения называют нормальной , или гауссовой , кривой. На рис. 4.6, а , 6 приведены нормальная кривая фд, (х) с параметрами йио 2 , т.е. И[а а 2), и график функции распределения случайной величины X , имеющей нормальный закон. Обратим внимание на то, что нормальная кривая симметрична относительно прямой х = а, имеет максимум в точке х = а ,

равный , т.е.

И две точки перегиба х = а±

с ординатой

Можно заметить, что в выражении плотности нормального закона параметры обозначены буквами а и ст 2 , которыми мы обозначаем математическое ожидание М(Х ) и дисперсию О(Х). Такое совпадение неслучайно. Рассмотрим теорему, устанавливающую теоретико-вероятностный смысл параметров нормального закона.

Теорема. Математическое ожидание случайной величины X, распределенной по нормальному закону, равно параметру а этого закона, т.е.

а ее дисперсия - параметру а 2 , т.е.

Математическое ожидание случайной величины X:

Произведем замену переменной, положив

Тогда пределы интегрирования не меняются

и, следовательно,

(первый интеграл равен нулю как интеграл от нечетной функции по симметричному относительно начала координат промежутку, а второй интеграл - интеграл Эйлера - Пуассона).

Дисперсия случайной величины X:

Сделаем ту же замену переменной х = а + о^2 t, как и при вычислении предыдущего интеграла. Тогда

Применяя метод интегрирования по частям, получим

Выясним, как будет меняться нормальная кривая при изменении параметров а и с 2 (или а). Если а = const, и меняется параметр а {а х а 3), т.е. центр симметрии распределения, то нормальная кривая будет смещаться вдоль оси абсцисс, не меняя формы (рис. 4.7).

Если а = const и меняется параметр а 2 (или а), то меняется ордината

максимума кривой При увеличении а ордината максимума

кривой уменьшается, но так как площадь под любой кривой распределения должна оставаться равной единице, то кривая становится более плоской, растягиваясь вдоль оси абсцисс; при уменьшении су, напротив, нормальная кривая вытягивается вверх, одновременно сжимаясь с боков. На рис. 4.8 показаны нормальные кривые с параметрами а 1(о 2 и а 3 , где о, а (он же математическое ожидание) характеризует положение центра, а параметр а 2 (он же дисперсия) - фор м у нормальной кривой.

Нормальный закон распределения случайной величины X с параметрами а = 0, ст 2 = 1, г.е. X ~ N(0; 1), называется стандартным или нормированным, а соответствующая нормальная кривая - стандартной или нормированной.

Сложность непосредственного нахождения функции распределения случайной величины, распределенной по нормальному закону, по формуле (3.23) и вероятности ее попадания на некоторый промежуток по формуле (3.22) связана с гем, что интеграл от функции (4.26) является «нсберу- щимся» в элементарных функциях. Поэтому их выражают через функцию

- функцию (интеграл вероятностей) Лапласа, для которой составлены таблицы. Напомним, что функция Лапласа уже встречалась нам при рассмотрении интегральной теоремы Муавра - Лапласа (см. параграф 2.3). Там же были рассмотрены ее свойства. Геометрически функция Лапласа Ф(.с) представляет собой площадь под стандартной нормальной кривой на отрезке [-х; х ] (рис. 4.9) 1 .

Рис. 4.10

Рис. 4.9

Теорема. Функция распределения случайной величины X, распределенной по нормальному закону, выражается через функцию Лапласа Ф(х) по формуле

По формуле (3.23) функция распределения:

Сделаем замену переменной, полагая при X -> -оо? -» -00, поэтому

1 Наряду с интегралом вероятностей вида (4.29), представляющим функцию Ф(х), в литературе используется его выражения и в виде других табулированных функций:

представляющих собой площади иод стандартной нормальной кривой соответственно на интервалах (0; х], (-оо; х], [-х>/2; Хл/2.

Первый интеграл

(в силу четности подынтегральной функции и того, что интеграл Эйлера - Пуассона равен ).

Второй интеграл с учетом формулы (4.29) составляет

Геометрически функция распределения представляет собой площадь под нормальной кривой на интервале (-со, х) (рис. 4.10). Как видим, она состоит из двух частей: первой, на интервале (-оо, а), равной 1/2, т.е. половине всей площади под нормальной кривой, и второй, на интервале (я, х),

равной

Рассмотрим свойства случайной величины, распределенной по нормальному закону.

1. Вероятность попадания случайной величины X, распределенной по нормальному закону, в интервал [х 1(х 2 ], равна

Учитывая, что согласно свойству (3.20) вероятность Р(х,

где и Г 2 определяются по формуле (4.33) (рис. 4.11). ?

2. Вероятность того, что отклонение случайной величины X, распределенной по нормальному закону, от математического ожидания а не превысит величину А > 0 (по абсолютной величине), равна

а также свойство нечетности функции Лапласа, получим

где? =Д/о (рис. 4.12). ?

На рис. 4.11 и 4.12 приведена геометрическая интерпретация свойств нормального закона .

Замечание. Рассмотренная в гл. 2 приближенная интегральная формула Муавра - Лапласа (2.10) следует из свойства (4.32) нормально распределенной случайной величины при х { = а, х 2 = Ь } а = пр и так

как биномиальный закон распределения случайной величины X = т с параметрами п и р, для которого получена эта формула, при п -> ос стремится к нормальному закону (см. гл. 6).

Аналогично и следствия (2.13), (2.14) и (2.16) интегральной формулы Муавра - Лапласа для числа X = т появления события в п независимых испытаниях и его частости т/п вытекают из свойств (4.32) и (4.34) нормального закона.

Вычислим по формуле (4.34) вероятности Р(Х-а д) при различных значениях Д (используем табл. II приложений). Получим

Отсюда вытекает «правило трех сигм».

Если случайная величина X имеет нормальный закон распределения с параметрами а и а 2 , т.е. М(а; а 2), то практически достоверно, что ее значения заключены в интервале (а - За, а + За).

Нарушение «правила трех сигм», т.е. отклонение нормально распределенной случайной величины X больше, чем на За (но абсолютной величине), является событием практически невозможным, так как его вероятность весьма мала:

Заметим, что отклонение Д в, при котором , называется

вероятным отклонением. Для нормального закона Д в « 0,675а, т.е. на интервал (а - 0,675а, а + 0,675а) приходится половина всей площади под нормальной кривой.

Найдем коэффициент асимметрии и эксцесс случайной величины X, распределенной по нормальному закону.

Очевидно, в силу симметрии нормальной кривой относительно вертикальной прямой х = а, проходящей через центр распределения а = М(Х), коэффициент асимметрии нормального распределения Л = 0.

Эксцесс нормально распределенной случайной величины X найдем по формуле (3.37), т.е.

где учли, что центральный момент 4-го порядка, найденный по формуле (3.30) с учетом определения (4.26), т.е.

(вычисление интеграла опускаем).

Таким образом, эксцесс нормального распределения равен нулю и крутость других распределений определяется по отношению к нормальному (об этом мы уже упоминали в параграфе 3.7).

О Пример 4.9. Полагая, что рост мужчин определенной возраст-ной группы есть нормально распределенная случайная величинах X с параметрами а = 173 и а 2 =36:

  • 1) Найти: а) выражение плотности вероятности и функции распределения случайной величины X; б) доли костюмов 4-го роста (176-182 см) и 3-го роста (170-176 см), которые нужно предусмотреть в общем объеме производства для данной возрастной группы; в) квантиль х 07 и 10%-ную точку случайной величины X.
  • 2) Сформулировать «правило трех сигм» для случайной величины X. Решение. 1, а) По формулам (4.26) и (4.30) запишем

1, б) Доля костюмов 4-го роста (176-182 см) в общем объеме производства определится по формуле (4.32) как вероятность


(рис. 4.14), так как по формулам (4.33)

Долю костюмов 3-го роста (170-176 см) можно было определить аналогично но формуле (4.32), но проще это сделать по формуле (4.34), если учесть, что данный интервал симметричен относительно математического ожидания а = М(Х) = 173, т.е. неравенство 170 X Х -173|

(см. рис. 4.14;.

1, в) Квантиль х 07 (см. параграф 3.7) случайной величины X найдем из уравнения (3.29) с учетом формулы (4.30):

откуда

По табл. 11 приложений находим I- 0,524 и

Это означает, что 70% мужчин данной возрастной группы имеют рост до 176 см.

  • 10%-ная точка - эго квантиль х 09 = 181 см (находится аналогично), т.е. 10% мужчин имеют рост не менее 181 см.
  • 2) Практически достоверно, что рост мужчин данной возрастной группы заключен в границах от а - Зет = 173 - 3 6 = 155 до а + Зет = 173 + 3 - 6 = = 191 (см), т.е. 155

    В силу особенностей нормального закона распределения, отмеченных в начале параграфа (и в гл. 6), он занимает центральное место в теории и практике вероятностно-статистических методов. Большое теоретическое значение нормального закона состоит в том, что с его помощью получен ряд важных распределений, рассматриваемых ниже.

    • Стрелками на рис. 4.11-4.13 отмечены условно п л о щ а д и соответствующих фигурпод нормальной кривой.
    • Значения функции Лапласа Ф(х) определяем но табл. II приложений.

Правило трёх сигм.

Подставим значение? в формулу (*), получим:

Итак, с вероятностью сколь угодно близкой к единице можно утверждать, что модуль отклонения нормально распределенной случайной величины от её математического ожидания не превосходит утроенного среднего квадратического отклонения.

Центральная предельная теорема.

Центральная предельная теорема представляет собой группу теорем, посвященных установлению условий, при которых возникает нормальный закон распределения. Среди этих теорем важнейшее место принадлежит теореме Ляпунова.

Если случайная величина Х представляет собой сумму большого числа взаимно? независимых случайных величин, то есть, влияние каждой из которых на всю сумму ничтожно мало, то случайная величинаХ имеет распределение, неограниченно приближающееся к нормальному распределению.

Начальные и центральные моменты непрерывной случайной величины, асимметрия и эксцесс. Мода и медиана.

В прикладных задачах, например в математической ста­тистике, при теоретическом изучении эмпирических распре­делений, отличающихся от нормального распределения, воз­никает необходимость количественных оценок этих различий. Для этой цели введены специальные безразмерные характеристики.

Определение. Мода непрерывной случайной величины (Мо (X )) – это её наиболее вероятное значение, для которого вероятность p i или плотность вероятности f(x) достигает максимума.

Определение. Медиана непрерывной случайной величины X (Me (X )) – это такое её значение, для которого выполняется равенство:

Геометрически вертикальная прямая x = Me (X) делит площадь фигуры под кривой на две равные части.

В точке X = Me (X), функция распределения F (Me (X)) =

Найти моду Mo, медиану Me и математическое ожидание M случайной величины X с плотностью вероятности f(x) = 3x 2 , при x I [ 0; 1 ].

Плотность вероятности f (x) максимальна при x = 1, т.е. f (1) = 3, следовательно, Mo (X) = 1 на интервале [ 0; 1 ].

Для нахождения медианы обозначим Me (X) = b.

Так как Me (X) удовлетворяет условию P (X 3 = .

b 3 = ; b = » 0,79

M (X) = =+=

Отметим получившиеся 3 значения Mo (x), Me (X), M (X) на оси Ox:

Определение. Асимметрией теоретического распределения называется отношение центрального момента третьего поряд­ка к кубу среднего квадратического отклонения:

Определение. Эксцессом теоретического распределения на­зывается величина, определяемая равенством:

где ? центральный момент четвертого порядка.

Для нормального распределения . При отклоне­нии от нормального распределения асимметрия положительна, если «длинная» и более пологая часть кривой распределения расположена справа от точки на оси абсцисс, соответствую­щей моде; если эта часть кривой расположена слева от моды, то асимметрия отрицательна (рис. 1, а, б).

Эксцесс характеризует «крутизну» подъема кривой распре­деления по сравнению с нормальной кривой: если эксцесс поло­жителен, то кривая имеет более высокую и острую вершину; в случае отрицательного эксцесса сравниваемая кривая имеет более низкую и пологую вершину.

Следует иметь в виду, что при использовании указанных характеристик сравнения опорными являются предположения об одинаковых величинах математического ожидания и дис­персии для нормального и теоретического распределений.

Пример. Пусть дискретная случайная величина Х задана законом распределения:

Найти: асимметрию и эксцесс теоретического распределения.

Найдем сначала математическое ожидание слу­чайной величины:

Затем вычисляем начальные и центральные моменты 2, 3 и 4-го порядков и :

Теперь по формулам находим искомые вели­чины:

В данном случае «длинная» часть кривой распределения рас­положена справа от моды, причем сама кривая является не­сколько более островершинной, чем нормальная кривая с теми же величинами математического ожидания и дисперсии.

Теорема. Для произвольной случайной величины Х и любого числа

?>0 справедливы неравенства:

Вероятность противоположного неравенства.

Средний расход воды на животноводческой ферме составляет 1000 л в день, а среднее квадратичное отклонение этой случайной величины не превышает 200 л. Оценить вероятность того, что расход воды на ферме в любой выбранный день не превзойдет 2000 л, используя неравенство Чебышева.

Пусть X –расход воды на животноводческой ферме (л).

Дисперсия D (X ) = . Так как границы интервала 0X 2000 симметричны относительно математического ожиданияМ (Х ) = 1000, то для оценки вероятности искомого события можно применить неравенство Чебышева:

То есть не менее, чем 0,96.

Для биномиального распределения неравенство Чебышева примет вид:

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН — раздел Математика, ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Наиболее Часто Встречаются Законы Равномерного, Нормального И Показательного.

Наиболее часто встречаются законы равномерного, нормального и показательного распределения вероятностей непрерывных случайных величин.

Равномерным называется распределение вероятностей непрерывной случайной величины Х, если на интервале (а,b), которому принадлежат все возможные значения Х, плотность распределения сохраняет постоянное значение (6.1)

Функция распределения имеет вид:

Нормальным называется распределение вероятностей непрерывной случайной величины Х, плотность которого имеет вид:

Вероятность того, что случайная величина Х примет значение, принадлежащее интервалу (?; ?):

где — функция Лапласа, причем,

Вероятность того, что абсолютная величина отклонения будет меньше положительного числа?:

В частности, при а = 0, . (6.7)

Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью:

где? – постоянная положительная величина.

Функция распределения показательного закона:

Вероятность попадания непрерывной случайной величины Х в интервал (а, в), распределенной по показательному закону:

1. Случайная величина Х равномерно распределена в интервале (-2;N). Найти: а) дифференциальную функцию случайной величины Х; б) интегральную функцию; в) вероятность попадания случайной величины в интервал (-1;); г) математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х.

2. Найти математическое ожидание и дисперсию случайной величины, равномерно распределенной в интервале: а) (5; 11); б) (-3; 5). Начертить графики этих функций.

3. Случайная величина Х равномерно распределена на интервале (2; 6), причем Д(х) = 12. Найти функции распределения случайной величины Х. Начертить графики функций.

4. Случайная величина Х распределена по закону прямоугольного треугольника (рис. 1) в интервале (0; а). Найти: а) дифференциальную функцию случайной величины Х; б) интегральную функцию; в) вероят-

ность попадания случайной величины

в интервал (); г) математическое

ожидание, дисперсию и среднее квад-

ратическое отклонение случайной

5. Случайная величина Х распределена по закону Симпсона («закону равнобедренного треугольника») (Рис. 2) на интервале (-а; а). Найти: а) дифференциальную функцию распределения вероятностей случайной величины Х;

б) интегральную функцию и построить ее график; в) вероятность попадания случайной величины в интервал (-); г) математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х.

6. Для исследования продуктивности определенной породы домашней птицы измеряют диаметр яиц. Наибольший поперечный диаметр яиц представляет собой случайную величину, распределенную по нормальному закону со средним значением 5 см и средним квадратическим отклонением 0,3 см. Найти вероятность того, что: а) диаметр взятого наудачу яйца будет заключен в границах от 4,7 до 6,2 см; б) отклонение диаметра от среднего не превзойдет по абсолютной величине 0,6 см.

7. Вес вылавливаемых в пруду рыб подчиняется нормальному закону распределения со средним квадратическим отклонением 150 г и математическим ожиданием а = 1000 г. Найти вероятность того, что вес пойманной рыбы будет: а) от 900 до 1300 г; б) не более 1500 г; в) не менее 800 г; г) отличаться от среднего веса по модулю не более чем на 200 г; д) начертить график дифференциальной функции случайной величины Х.

8. Урожайность озимой пшеницы по совокупности участков распределяется по нормальному закону с параметрами: а = 50 ц/га, = 10 ц/га. Определить: а) какой процент участков будет иметь урожайность свыше 40 ц/га; б) процент участков с урожайность от 45 до 60 ц/га.

9. Выборочным методом измеряется засоренность зерна, случайные ошибки измерения подчинены нормальному закону распределения со средним квадратическим отклонением 0,2 г и математическим ожиданием а = 0. Найти вероятность того, что из четырех независимых измерений ошибка хотя бы одного из них не превзойдет по абсолютной величине 0,3 г.

10. Количество зерна, собранного с каждой делянки опытного поля, есть нормально распределенная случайная величина Х, имеющая математическое ожидание а = 60 кг и среднее квадратическое отклонение равно 1,5 кг. Найти интервал, в котором с вероятностью 0,9906 будет заключена величина Х. Написать дифференциальную функцию этой случайной величины.

11. С вероятностью 0,9973 было установлено, что абсолютное отклонение живого веса случайно взятой головы крупного рогатого скота от среднего веса животного по всему стаду не превосходит 30 кг. Найти среднее квадратическое отклонение живого веса скота, считая, что распределение скота по живому весу подчиняется нормальному закону.

12. Урожайность овощей по участкам является нормально-распределенной случайной величиной с математическим ожиданием 300 ц/га и средним квадратическим отклонением 30 ц/га. С вероятностью 0,9545 определить границы, в которых будет находиться средняя урожайность овощей на участках.

13. Нормально-распределенная случайная величина Х задана дифференциальной функцией:

Определить: а) вероятность попадания случайной величины в интервал

(3; 9); б) моду и медиану случайной величины Х.

14. Торговая фирма продает однотипные изделия двух производителей. Срок службы изделий подчиняется нормальному закону. Средний срок службы изделий первого производителя составляет 5,5 тыс. часов, а второго 6 тыс. часов. Первый производитель утверждает, что с вероятностью 0,95 срок службы первого производителя находится в границах от 5 до 6 тыс. часов, а второй, с вероятностью 0,9, в границах от 5 до 7 тыс. часов. Какой производитель имеет большую колеблемость срока службы изделий.

15. Месячная заработная плата работников предприятия распределяется по нормальному закону с математическим ожиданием а = 10 тыс. руб. Известно, что 50 % работников предприятия получает заработную плату от 8 до 12 тыс. руб. Определить, какой процент работников предприятия имеет месячную заработную плату от 9 до 18 тыс. руб.

16. Написать плотность и функцию распределения показательного закона, если: а) параметр; б) ; в) . Начертить графики функций.

17. Случайная величина Х распределена по показательному закону, причем. Найти вероятность попадания случайной величины Х в интервал: а) (0; 1); б) (2; 4). М(Х), Д(Х), (Х).

18. Найти М(Х), Д(Х), (Х) показательного закона распределения случайной величины Х заданной функцией:

19. Испытываются два независимо работающих элемента. Длительность безотказной работы первого имеет показательнее распределение, второго. Найти вероятность того, что за время длительностью 20 часов: а) оба элемента будут работать; б) откажет только один элемент; в) откажет хотя бы один элемент; г) оба элемента откажут.

20. Вероятность того, что оба независимых элемента будут работать в течении 10 суток равна 0,64. Определить функцию надежности для каждого элемента, если функции одинаковы.

21. Среднее число ошибок, которые делает оператор в течение часа работы равно 2. Найти вероятность того, что за 3 часа работы оператор сделает: а) 4 ошибки; б) не менее двух ошибок; в) хотя бы одну ошибку.

22. Среднее число вызовов, поступающих на АТС в одну минуту, равно трем. Найти вероятность того, что за 2 минуты поступит: а) 4 вызова; б) не менее трех вызовов.

23. Случайная величина Х распределена по закону Коши

Непрерывные случайные величины

6. Непрерывные случайные величины

6.1. Числовые характеристики непрерывных случайных величин

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Функцией распределения называют функцию F (x) ? определяющую вероятность того, что случайная величина Х в результате испытания примет значение, меньше х, т.е.

Свойства функции распределения:

1. Значения функции распределения принадлежат отрезку , т.е.

2. F (x)- неубывающая функция, т.е. если , то .

· Вероятность того, что случайная величина Х примет значение, заключенное в интервале , равна:

· Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.

Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию — первую производную от функции распределения .

Вероятность попадания непрерывной случайной величины в заданный интервал:

Нахождения функции распределения по известной плотности распределения:

Свойства плотности распределения

1. Плотность распределения неотрицательная функция:

2. Условие нормировки:

Среднее квадратическое отклонение

6.2. Равномерное распределение

Распределение вероятностей называют равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение.

Плотность вероятности равномерно распределенной случайной величины

Среднее квадратическое отклонение

6.3. Нормальное распределение

Нормальным называют распределение вероятностей случайной величины, которое описывается плотностью распределения

а- математическое ожидание

среднее квадратическое отклонение

дисперсия

Вероятность попадания в интервал

Где — функция Лапласа. Данная функция табулирована, т.е. интеграл нет необходимости вычислять, необходимо пользоваться таблицей.

Вероятность отклонения случайной величины х от математического ожидания

Правило трех сигм

Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратичческого отклонения.

Если быть точным, то вероятность выхода за пределы указанного интервала равна 0,27%

Вероятность нормального распределения онлайн калькулятор

6.4. Показательное распределение

Случайная величина Х распределена по показательному закону, если плотность распределения имеет вид

Среднее квадратическое отклонение

Отличительной особенностью данного распределения является то, что математическое ожидание равно среднему квадратическому отклонению.

Теория вероятностей. Случайные события (стр. 6)

12. Случайные величины Х , если , , , .

13. Вероятность изготовления бракованного изделия равна 0,0002. Вычислить вероятность того, что контролер, проверяющий качество 5000 изделий, обнаружит среди них 4 бракованных.

Х Х примет значение, принадлежащее интервалу . Построить графики функций и .

15. Вероятность безотказной работы элемента распределена по показательному закону (). Найти вероятность того, что элемент проработает безотказно в течение 50 часов.

16. Устройство состоит из 10 независимо работающих элементов. Вероятность отказа каждого элемента за время Т равна 0,05. С помощью неравенства Чебышева оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом (математическим ожиданием) отказов за время Т окажется меньше двух.

17. По цели (на рис.4.1 м, м) сделано три независимых выстрела без систематической ошибки () с ожидаемым разбросом попадания м. Найти вероятность хотя бы одного попадания в цель.

1. Сколько трехзначных чисел можно составить из цифр 0,1,2,3,4,5?

2. Хор состоит из 10 участников. Сколькими способами можно выбрать в течение 3 дней по 6 участников так, чтобы каждый день были различные составы хора?

3. Сколькими способами можно разделить колоду из 52 тасованных карт пополам так, чтобы в одной половине оказалось три туза?

4. Из ящика, содержащего жетоны с номерами от 1 до 40, участники жеребьевки вытягивают жетоны. Определить вероятность того, что номер первого наудачу извлеченного жетона не содержит цифры 2.

5. На испытательном стенде в определенных условиях испытываются 250 приборов. Найти вероятность того, что в течение часа откажет хотя бы один из испытываемых приборов, если известно, что вероятность отказа в течение часа одного из этих приборов равна 0,04 и одинакова для всех приборов.

6. В пирамиде 10 винтовок, из которых 4 снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовок без оптического прицела эта вероятность равна 0,8. Стрелок поразил мишень из наудачу взятой винтовки. Найти вероятность того, что стрелок стрелял из винтовки с оптическим прицелом.

7. Прибор состоит из 10 узлов. Надежность (вероятность безотказной работы в течение времени t для каждого узла равна . Узлы выходят из строя независимо один от другого. Найти вероятность того, что за время t : а) откажет хотя бы один узел; б) откажут ровно два узла; в) откажет ровно один узел; г) откажут не менее двух узлов.

8. Испытывается каждый из 16 элементов некоторого устройства. Вероятность того, что элемент выдержит испытания, равна 0,8. Найти наивероятнейшее число элементов, которые выдержат испытание.

9. Найти вероятность того, что событие А (переключение передач) наступит 70 раз на 243-километровой трассе, если вероятность переключения на каждом километре этой трассы равна 0,25.

10. Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена не менее 75 раз и не более 90 раз.

Х .

12. Случайные величины Х и независимы. Найти математическое ожидание и дисперсию случайной величины , если , , , .

13. Рукопись объемом в 1000 страниц машинописного текста содержит 100 опечаток. Найти вероятность того, что наудачу взятая страница содержит ровно 2 опечатки.

14. Непрерывная случайная величина Х распределена равномерно с постоянной плотностью вероятностей , где Найти 1) параметр и записать закон распределения; 2) Найти , ; 3) Найти вероятность того, что Х примет значение, принадлежащее интервалу .

15. Длительность безотказной работы элемента имеет показательное распределение (). Найти вероятность того, что за t = 24 ч элемент не откажет.

16. Непрерывная случайная величина Х распределена по нормальному закону . Найти , . Найти вероятность того, что в результате испытания Х примет значение, заключенное в интервале .

17. Задано распределение вероятностей дискретной двумерной случайной величины:

Найти закон распределения составляющих Х и ; их математические ожидания и ; дисперсии и ; коэффициент корреляции .

1. Сколько трехзначных чисел можно составить из цифр 1,2, 3, 4, 5, если каждую из этих цифр использовать не более одного раза?

2. Дано n точек, никакие 3 из которых не лежат на одной прямой. Сколько прямых можно провести, соединяя точки попарно?

Сколько можно сделать костей домино, используя числа от 0 до 9?

3. Какова вероятность того, что наудачу вырванный листок из нового календаря соответствует первому числу месяца? (Год считается не високосным).

4. В цехе имеется 3 телефона, работающих независимо друг от друга.

5. Вероятности занятости каждого из них соответственно следующие: ; ; . Найти вероятность того, что хотя бы один телефон свободен.

6. Имеются три одинаковые по виду урны. В первой урне 20 белых шаров, во второй — 10 белых и 10 черных шаров, в третьей — 20 черных шаров. Из выбранной наугад урны вынули белый шар. Найти вероятность того, что шар вынут из первой урны.

7. В некоторых районах летом в среднем 20% дней бывают дождливыми. Какова вероятность того, что в течение одной недели: а) будет хотя бы один дождливый день; б) будет ровно один дождливый день; в) число дождливых дней будет не более четырех; г) дождливых дней не будет.

8. Вероятность нарушения точности в сборке прибора составляет 0,32. Определить наиболее вероятное число точных приборов в партии на 9 штук.

9. Определить вероятность того, что при 150 выстрелах из винтовки мишень будет поражена 70 раз, если вероятность поражения мишени при одном выстреле равна 0,4.

10. Определить вероятность того, что из 1000 родившихся детей число мальчиков будет не менее 455 и не более 555, если вероятность рождения мальчиков равна 0,515.

11. Дан закон распределения дискретной случайной величины Х :

Найти: 1) значение вероятности , соответствующее значению ; 2) , , ; 3) функцию распределения ; построить ее график. Построить многоугольник распределения случайной величины Х .

12. Случайные величины Х и независимы. Найти математическое ожидание и дисперсию случайной величины , если , , , .

13. Вероятность изготовления нестандартной детали равна 0,004. Найти вероятность того, что среди 1000 деталей окажется 5 нестандартных.

14. Непрерывная случайная величина Х задана функцией распределения Найти: 1) функцию плотности ; 2) , , ; 3) вероятность того, что в результате опыта случайная величина Х примет значение, принадлежащее интервалу . Построить графики функций и .км, км. Определить вероятность двух попаданий в цель.

1. На собрании должны выступать ораторы А , В , С , D . Сколькими способами их можно разместить в списке выступающих так, чтобы В выступал после оратора А ?

2. Сколькими способами можно разложить 14 одинаковых шаров по 8-ми ящикам?

3. Сколько пятизначных чисел можно составить из цифр от 1 по 9?

4. Студент пришел на экзамен, зная лишь 24 из 32-х вопросов программы. Экзаменатор задал ему 3 вопроса. Найти вероятность того, что студент ответил на все вопросы.

5. К концу дня в магазине осталось 60 арбузов, среди которых 50 спелых. Покупатель выбирает 2 арбуза. Какова вероятность того, что оба арбуза спелые?

6. В группе спортсменов 20 бегунов, 6 прыгунов и 4 метателя молота. Вероятность того, что будет выполнена норма мастера спорта бегуном, равна 0,9; прыгуном — 0,8 и метателем — 0,75. Определить вероятность того, что наудачу вызванный спортсмен выполнит норму мастера спорта.

7. Вероятность того, что вещь, взятая напрокат, будет возвращена исправной, равна 0,8. Определить вероятность того, что из пяти взятых вещей: а) три будут возвращены исправными; б) все пять вещей будут возвращены исправными; в) будут возвращены исправными не менее двух вещей.

8. Вероятность появления брака в партии из 500 деталей равна 0,035. Определить наивероятнейшее число бракованных деталей в этой партии.

9. При производстве электрических лампочек вероятность изготовления лампы первого сорта принимается равной 0,64. Определить вероятность того, что из 100 взятых наудачу электроламп, 70 будут первого сорта.

10. Подлежат исследованию 400 проб руды. Вероятность промышленного содержания металла в каждой пробе одинакова и равна 0,8. Найти вероятность того, что число проб с промышленным содержанием металла будет заключено между 290 и 340.

11. Дан закон распределения дискретной случайной величины Х, если Х Х и ; 4) выяснить, являются ли эти величины зависимыми.

1. Сколькими способами можно рассадить 8 гостей за круглым столом так, чтобы два известных гостя сидели рядом?

2. Сколько различных «слов» можно составить, переставляя буквы слова «комбинаторика»?

3. Сколько существует треугольников, длины сторон которых принимают одно из следующих значений: 4, 5, 6, 7 см?

4. В конверте лежат буквы разрезной азбуки: О , П , Р , С , Т . Буквы тщательно перемешаны. Определить вероятность того, что, вынимая эти буквы и укладывая их рядом, получится слово «СПОРТ ‘.

5. С первого автомата на сборку поступает 20%, со второго 30%, с третьего — 50% деталей. Первый автомат дает в среднем — 0,2% брака, второй — 0,3%, третий — 1 %. Найти вероятность того, что поступившая на сборку деталь бракованная.

6. Один из трех стрелков вызывается на линию огня и производит выстрел. Цель поражена. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5, для третьего — 0,8. Найти вероятность того, что выстрел произведён вторым стрелком.

7. В цехе 6 моторов. Для каждого мотора вероятность того, что он в данный момент включен, равна 0,8. Найти вероятность того, что в данный момент: а) включено 4 мотора; б) включен хотя бы один мотор; в) включены все моторы.

8. В телевизоре стоят 12 ламп. Каждая из них с вероятностью 0,4 может выйти из строя в течение гарантийного срока. Найти наивероятнейшее число ламп, вышедших из строя в течение гарантийного срока.

9. Вероятность рождения мальчика равна 0,515. Найти вероятность того, что из 200 родившихся детей мальчиков и девочек будет поровну.

10. Вероятность того, что деталь не прошла проверку ОТК, будет . Найти вероятность того, что среди 400 случайно отобранных деталей окажется непроверенных от 70 до 100 деталей.

11. Дан закон распределения дискретной случайной величины Х :

  • Основные законы распределения случайной величины Учреждение образования «Белорусская государственная Кафедра высшей математики по изучению темы «Основные законы распределения случайной величины» студентами бухгалтерского факультета заочной формы получения образования (НИСПО) Основные законы распределения случайной […]
  • Штрафы гибдд лениногорск Поздно государство предпримет меры по Штрафы гибдд лениногорск взысканию вашей если Вы не обжаловали Штрафы гибдд лениногорск нужно Условные обозначения. Без регистрационных документов и без полиса ОСАГО обойдется в 500 места гиперссылки на данную статью. Должностных Штрафы гибдд лениногорск […]
  • Выходное пособие чернобыльцу: (3 + 1) или только 3? Для граждан, пострадавших вследствие Чернобыльской катастрофы (далее - чернобыльцы), Законом № 796* установлены определенные льготы и гарантии. Так, чернобыльцам, отнесенным к категории 1, среди прочего указанным Законом определено преимущественное право остаться на […]
  • Налог на дачу. Это надо знать. Думаем с мужем о да че, куда можно было бы приехать, покапаться немного в грядках, а вечером сесть в кресло-качалку у костра и ни о чём не думать. Просто отдыхать. Не понаслышке знаем, что садоводство и огородничество обходится недешево (навоз, удобрения, рассада), налоги… Какие налоги […]
  • Совет 1: Как определить закон распределения Как определить закон распределения Как построить диаграмму Парето Как найти математическое ожидание, если известна дисперсия - математический справочник; - простой карандаш; - тетрадь; - ручка. Нормальный закон распределения в 2018 Совет 2: Как […]
  • 3. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ПОНЯТИЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Случайной величиной Называется величина, которая в результате испытаний, проводимых в одних и тех же условиях, принимает различные, вообще говоря, значения, зависящие от не учитываемых случайных факторов. Примеры случайных величин: число выпавших очков на […]
  • Ликвидация проход Sобщ-общая площадь объекта, км 2 ; N пор -число пораженных элементов объекта (зданий, цехов, сооружений, систем); Nобщ -общее число элементов объекта. Для определения числа жертв можно использовать следующее выражение: где Sпор - число жертв при внезапном взрыве; Lс -численность работающих данной […]
  • Законы излучения стефана больцмана Для реальных тел закон Стефана-Больцмана выполняется лишь качественно, то есть с ростом температуры энергетические светимости всех тел увеличиваются. Однако, для реальных тел зависимость энергетической светимости от температуры уже не описывается простым соотношением (16.7), а […]

Глава 1. Дискретная случайная величина

§ 1.Понятия случайной величины.

Закон распределения дискретной случайной величины.

Определение : Случайной называется величина, которая в результате испытания принимает только одно значение из возможного множества своих значение, наперед неизвестное и зависящее от случайных причин.

Различают два вида случайных величин: дискретные и непрерывные.

Определение : Случайная величина Х называется дискретной (прерывной), если множество ее значений конечное или бесконечное, но счетное.

Другими словами, возможные значения дискретной случайной величину можно перенумеровать.

Описать случайную величину можно с помощью ее закона распределения.

Определение : Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями.

Закон распределения дискретной случайной величины Х может быть задан в виде таблицы, в первой строке которой указаны в порядке возрастания все возможные значения случайной величины, а во второй строке соответствующие вероятности этих значений, т. е.

где р1+ р2+…+ рn=1

Такая таблица называется рядом распределения дискретной случайной величины.

Если множество возможных значений случайной величины бесконечно, то ряд р1+ р2+…+ рn+… сходится и его сумма равна 1.

Закон распределения дискретной случайной величины Х можно изобразить графически, для чего в прямоугольной системе координат строят ломаную, соединяющую последовательно точки с координатами (xi;pi), i=1,2,…n. Полученную линию называют многоугольником распределения (рис.1).


Органическая хиимя" href="/text/category/organicheskaya_hiimya/" rel="bookmark">органической химии соответственно равны 0,7 и 0,8. Составить закон распределения случайной величины Х - числа экзаменов, которые сдаст студент.

Решение. Рассматриваемая случайная величина X в результате экзамена может принять одно из следующих значений:x1=0, x2=1, х3=2.

Найдем вероятность этих значений.Обозначим события:

https://pandia.ru/text/78/455/images/image004_81.jpg" width="259" height="66 src=">


Итак, закон распределения случайной величины Х задается таблицей:

Контроль:0,6+0,38+0,56=1.

§ 2. Функция распределения

Полное описание случайной величины дает также функция распределения.

Определение: Функцией распределения дискретной случайной величины Х называется функция F(x), определяющая для каждого значения х вероятность того, что случайная величина Х примет значение, меньше х:

F(x)=Р(Х<х)

Геометрически функция распределения интерпретируется как вероятность того, что случайная величина Х примет значение, которое изображается на числовой прямой точкой, лежащей левее точки х.

1)0≤ F(x) ≤1;

2) F(x)- неубывающая функция на (-∞;+∞);

3) F(x)- непрерывна слева в точках х= xi (i=1,2,…n) и непрерывна во всех остальных точках;

4) F(-∞)=Р (Х<-∞)=0 как вероятность невозможного события Х<-∞,

F(+∞)=Р(Х<+∞)=1 как вероятность достоверного события Х<-∞.

Если закон распределения дискретной случайной величины Х задан в виде таблицы:

то функция распределения F(x) определяется формулой:

https://pandia.ru/text/78/455/images/image007_76.gif" height="110">

0 при х≤ x1,

р1 при x1< х≤ x2,

F(x)= р1 + р2 при x2< х≤ х3

1 при х> хn.

Её график изображен на рис.2:

§ 3. Числовые характеристики дискретной случайной величины.

К числу важных числовых характеристик относится математическое ожидание.

Определение : Математическим ожиданием М(Х) дискретной случайной величины Х называется сумма произведений всех ее значений на соответствующие им вероятности:

М(Х)= ∑ xiрi= x1р1 + x2р2+…+ xnрn

Математическое ожидание служит характеристикой среднего значения случайной величины.

Свойства математического ожидания:

1)M(C)=C, где С-постоянная величина;

2)М(С Х)=С М(Х),

3)М(Х±Y)=М(Х) ±M(Y);

4)M(X Y)=M(X) M(Y), где X, Y - независимые случайные величины;

5)M(X±C)=M(X)±C, где С-постоянная величина;

Для характеристики степени рассеивания возможных значений дискретной случайной величины вокруг ее среднего значения служит дисперсия .

Определение : Дисперсией D ( X ) случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

Свойства дисперсии:

1)D(C)=0, где С-постоянная величина;

2)D(X)>0, где Х - случайная величина;


3)D(C X)=C2 D(X), где С-постоянная величина;

4)D(X+Y)=D(X)+D(Y), где X, Y - независимые случайные величины;

Для вычисления дисперсии часто бывает удобно пользоваться формулой:

D(X)=M(X2)-(M(X))2,

где М(Х)=∑ xi2рi= x12р1 + x22р2+…+ xn2рn

Дисперсия D(X) имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния возможных значений случайной величины используют также величину √D(X).

Определение: Средним квадратическим отклонением σ(Х) случайной величины Х называется квадратный корень из дисперсии:

Задача №2. Дискретная случайная величина Х задана законом распределения:

Найти Р2, функцию распределения F(x) и построить ее график, а также M(X),D(X), σ(Х).

Решение: Так как сумма вероятностей возможных значений случайной величины Х равна 1, то

Р2=1- (0,1+0,3+0,2+0,3)=0,1

Найдем функцию распределения F(х)=P(X

Геометрически это равенство можно истолковать так: F(х) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.

Если х≤-1, то F(х)=0, т. к. на (-∞;х) нет ни одного значения данной случайной величины;

Если -1<х≤0, то F(х)=Р(Х=-1)=0,1, т. к. в промежуток (-∞;х) попадает только одно значение x1=-1;

Если 0<х≤1, то F(х)=Р(Х=-1)+ Р(Х=0)=0,1+0,1=0,2, т. к. в промежуток

(-∞;х) попадают два значения x1=-1 и x2=0;

Если 1<х≤2, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)= 0,1+0,1+0,3=0,5, т. к. в промежуток (-∞;х) попадают три значения x1=-1, x2=0 и x3=1;

Если 2<х≤3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)= 0,1+0,1+0,3+0,2=0,7, т. к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1 и х4=2;

Если х>3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)+Р(Х=3)= 0,1+0,1+0,3+0,2+0,3=1, т. к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1,х4=2 и х5=3.

https://pandia.ru/text/78/455/images/image006_89.gif" width="14 height=2" height="2"> 0 при х≤-1,

0,1 при -1<х≤0,

0,2 при 0<х≤1,

F(x)= 0,5 при 1<х≤2,

0,7 при 2<х≤3,

1 при х>3

Изобразим функцию F(x)графически (рис.3):

https://pandia.ru/text/78/455/images/image014_24.jpg" width="158 height=29" height="29">≈1,2845.

§ 4. Биномиальный закон распределения

дискретной случайной величины, закон Пуассона.

Определение: Биномиальным называется закон распределения дискретной случайной величины Х - числа появлений события А в n независимых повторных испытаниях, в каждом из которых события А может наступить с вероятностью p или не наступить с вероятностью q=1-p. Тогда Р(Х=m)-вероятность появления события А ровно m раз в n испытаниях вычисляется по формуле Бернулли:

Р(Х=m)=Сmnpmqn-m

Математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной по бинарному закону, находят, соответственно, по формулам:

https://pandia.ru/text/78/455/images/image016_31.gif" width="26"> Вероятность события А - «выпадение пятерки» в каждом испытании одна и та же и равна 1/6, т. е. Р(А)=р=1/6, тогда Р(А)=1-p=q=5/6, где

- «выпадения не пятерки».

Случайная величина Х может принимать значения: 0;1;2;3.

Вероятность каждого из возможных значений Х найдем по формуле Бернулли:

Р(Х=0)=Р3(0)=С03р0q3=1 (1/6)0 (5/6)3=125/216;

Р(Х=1)=Р3(1)=С13р1q2=3 (1/6)1 (5/6)2=75/216;

Р(Х=2)=Р3(2)=С23р2q =3 (1/6)2 (5/6)1=15/216;

Р(Х=3)=Р3(3)=С33р3q0=1 (1/6)3 (5/6)0=1/216.

Т. о. закон распределения случайной величины Х имеет вид:

Контроль: 125/216+75/216+15/216+1/216=1.

Найдем числовые характеристики случайной величины Х:

M(X)=np=3 (1/6)=1/2,

D(X)=npq=3 (1/6) (5/6)=5/12,

Задача№4. Станок-автомат штампует детали. Вероятность того, что изготовленная деталь окажется бракованной равна 0,002. Найти вероятность того, что среди 1000 отобранных деталей окажется:

а) 5 бракованных;

б) хотя бы одна бракованная.

Решение: Число n=1000 велико, вероятность изготовления бракованной детали р=0,002 мала, и рассматриваемые события (деталь окажется бракованной) независимы, поэтому имеет место формула Пуассона:

Рn(m)= e - λ λm

Найдем λ=np=1000 0,002=2.

а)Найдем вероятность того, что будет 5 бракованных деталей (m=5):

Р1000(5)= e -2 25 = 32 0,13534 = 0,0361

б)Найдем вероятность того, что будет хотя бы одна бракованная деталь.

Событие А -«хотя бы одна из отобранных деталей бракованная» является противоположным событию -«все отобранные детали не бракованные».Следовательно, Р(А)=1-Р(). Отсюда искомая вероятность равна: Р(А)=1-Р1000(0)=1- e -2 20 = 1- e-2=1-0,13534≈0,865.

Задачи для самостоятельной работы.

1.1

1.2. Дисперсная случайная величина Х задана законом распределения:

Найти р4, функцию распределения F(X) и построить ее график, а также M(X),D(X), σ(Х).

1.3. В коробке 9 фломастеров, из которых 2 фломастера уже не пишут. Наудачу берут 3 фломастера. Случайная величина Х - число пишущих фломастеров среди взятых. Составить закон распределения случайной величины.

1.4. На стеллаже библиотеки в случайном порядке расставлено 6 учебников, причем 4 из них в переплете. Библиотекарь берет наудачу 4 учебника. Случайная величина Х-число учебников в переплете среди взятых. Составить закон распределения случайной величины.

1.5. В билете две задачи. Вероятность правильного решения первой задачи равна 0,9, второй-0,7. Случайная величина Х- число правильно решенных задач в билете. Составить закон распределения, вычислить математическое ожидание и дисперсию этой случайной величины, а также найти функцию распределения F(x) и построить ее график.

1.6. Три стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,5, для второго-0,8, для третьего -0,7. Случайная величина Х - число попаданий в мишень, если стрелки делают по одному выстрелу. Найти закон распределения, M(X),D(X).

1.7. Баскетболист бросает мяч в корзину с вероятностью попадания при каждом броске 0,8. За каждое попадание он получает 10 очков, а в случае промаха очки ему не начисляют. Составить закон распределения случайной величины Х-числа очков, полученных баскетболистом за 3 броска. Найти M(X),D(X), а также вероятность того, что он получит более 10 очков.

1.8. На карточках написаны буквы, всего 5 гласных и 3 согласных. Наугад выбирают 3 карточки, причем каждый раз взятую карточку возвращают назад. Случайная величина Х-число гласных букв среди взятых. Составить закон распределения и найти M(X),D(X),σ(Х).

1.9. В среднем по 60% договоров страховая компания выплачивает страховые суммы в связи с наступлением страхового случая. Составить закон распределения случайной величины Х - числа договоров, по которым была выплачена страховая сумма среди наудачу отобранных четырех договоров. Найти числовые характеристики этой величины.

1.10. Радиостанция через определенные промежутки времени посылает позывные сигналы (не более четырех) до установления двусторонней связи. Вероятность получения ответа на позывной сигнал равна 0,3. Случайная величина Х-число посланных позывных сигналов. Составить закон распределения и найти F(x).

1.11. Имеется 3 ключа, из которых только один подходит к замку. Составить закон распределения случайной величины Х-числа попыток открывания замка, если испробованный ключ в последующих попытках не участвует. Найти M(X),D(X).

1.12. Производятся последовательные независимые испытания трех приборов на надежность. Каждый следующий прибор испытывается только в том случае, если предыдущий оказался надежным. Вероятность выдержать испытание для каждого прибора равна 0,9. Составить закон распределения случайной величины Х-числа испытанных приборов.

1.13 .Дискретная случайная величина Х имеет три возможные значения: х1=1, х2,х3, причем х1<х2<х3. Вероятность того, что Х примет значения х1 и х2, соответственно равны 0,3 и 0,2. Известно, что М(Х)=2,2, D(X)=0,76. Составить закон распределения случайной величины.

1.14. Блок электронного устройства содержит 100 одинаковых элементов. Вероятность отказа каждого элемента в течении времени Т равна 0,002. Элементы работают независимо. Найти вероятность того, что за время Т откажет не более двух элементов.

1.15. Учебник издан тиражом 50000 экземпляров. Вероятность того, что учебник сброшюрован неправильно, равна 0,0002. Найти вероятность того, что тираж содержит:

а) четыре бракованные книги,

б) менее двух бракованных книг.

1 .16. Число вызовов, поступающих на АТС каждую минуту, распределено по закону Пуассона с параметром λ=1,5. Найдите вероятность того, что за минуту поступит:

а) два вызова;

б)хотя бы один вызов.

1.17.

Найти M(Z),D(Z), если Z=3X+Y.

1.18. Даны законы распределения двух независимых случайных величин:

Найти M(Z),D(Z), если Z=X+2Y.

Ответы:

https://pandia.ru/text/78/455/images/image007_76.gif" height="110">1.1. р3=0,4; 0 при х≤-2,

0,3 при -2<х≤0,

F(x)= 0,5 при 0<х≤2,

0,9 при 2<х≤5,

1 при х>5

1.2. р4=0,1; 0 при х≤-1,

0,3 при -1<х≤0,

0,4 при 0<х≤1,

F(x)= 0,6 при 1<х≤2,

0,7 при 2<х≤3,

1 при х>3

M(Х)=1; D(Х)=2,6; σ(Х) ≈1,612.

https://pandia.ru/text/78/455/images/image025_24.gif" width="2 height=98" height="98"> 0 при х≤0,

0,03 при 0<х≤1,

F(x)= 0,37 при 1<х≤2,

1 при х>2

M(Х)=2; D(Х)=0,62

M(Х)=2,4; D(Х)=0,48, P(X>10)=0,896

1. 8 .

M(Х)=15/8; D(Х)=45/64; σ(Х) ≈

M(Х)=2,4; D(Х)=0,96

https://pandia.ru/text/78/455/images/image008_71.gif" width="14">1.11.

M(Х)=2; D(Х)=2/3

1.14. 1,22 e-0,2≈0,999

1.15. а)0,0189; б) 0,00049

1.16. а)0,0702; б)0,77687

1.17. 3,8; 14,2

1.18. 11,2; 4.

Глава 2. Непрерывная случайная величина

Определение: Непрерывной называют величину, все возможные значения которой полностью заполняют конечный или бесконечный промежуток числовой оси.

Очевидно, число возможных значений непрерывной случайной величины бесконечно.

Непрерывную случайную величину можно задавать с помощью функции распределения.

Определение: Функцией распределения непрерывной случайной величины Х называется функция F(х), определяющая для каждого значения хhttps://pandia.ru/text/78/455/images/image028_11.jpg" width="14" height="13">R

Функцию распределения иногда называют интегральной функцией распределения.

Свойства функции распределения:

1)1≤ F(x) ≤1

2)У непрерывной случайной величины функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек.

3) Вероятность попадания случайной величины Х в один из промежутков (а;b), [а;b), [а;b], равна разности значений функции F(х) в точках а и b, т.е. Р(а<Х

4)Вероятность того, что непрерывная случайная величина Х примет одно отдельное значение равна 0.

5) F(-∞)=0, F(+∞)=1

Задание непрерывной случайной величины с помощью функции распределения не является единственным. Введем понятие плотности распределения вероятностей (плотность распределения).

Определение : Плотностью распределения вероятностей f ( x ) непрерывной случайной величины Х называется производная от ее функции распределения, т. е.:

Плотность распределения вероятностей иногда называют дифференциальной функцией распределения или дифференциальным законом распределения.

Графикплотности распределения вероятностей f(x) называется кривой распределения вероятностей .

Свойства плотности распределения вероятностей:

1)f(x) ≥0,при хhttps://pandia.ru/text/78/455/images/image029_10.jpg" width="285" height="141">.gif" width="14" height="62 src="> 0 при х≤2,

f(x)= с(х-2) при 2<х≤6,

0 при х>6.

Найти: а) значение с; б) функцию распределения F(х) и построить ее график; в) Р(3≤х<5)

Решение:

+

а) Значение с найдем из условия нормировки: ∫ f(x)dx=1.

Следовательно, -∞

https://pandia.ru/text/78/455/images/image032_23.gif" height="38 src="> -∞ 2 2 х

если 2<х≤6, то F(x)= ∫ 0dx+∫ 1/8(х-2)dx=1/8(х2/2-2х) = 1/8(х2/2-2х - (4/2-4))=

1/8(х2/2-2х+2)=1/16(х-2)2;

Gif" width="14" height="62"> 0 при х≤2,

F(х)= (х-2)2/16 при 2<х≤6,

1 при х>6.

График функции F(х) изображен на рис.3

https://pandia.ru/text/78/455/images/image034_23.gif" width="14" height="62 src="> 0 при х≤0,

F(х)= (3 arctg х)/π при 0<х≤√3,

1 при х>√3.

Найти дифференциальную функцию распределения f(х)

Решение: Т. к.f(х)= F’(x), то

https://pandia.ru/text/78/455/images/image011_36.jpg" width="118" height="24">

Все свойства математического ожидания и дисперсии, рассмотренные ранее для дисперсных случайных величин, справедливы и для непрерывных.

Задача №3. Случайная величина Х задана дифференциальной функцией f(x):

https://pandia.ru/text/78/455/images/image036_19.gif" height="38"> -∞ 2

X3/9 + х2/6 = 8/9-0+9/6-4/6=31/18,

https://pandia.ru/text/78/455/images/image032_23.gif" height="38"> +∞

D(X)= ∫ х2 f(x)dx-(М(х))2=∫ х2 х/3 dx+∫1/3х2 dx=(31/18)2=х4/12 +х3/9 -

- (31/18)2=16/12-0+27/9-8/9-(31/18)2=31/9- (31/18)2==31/9(1-31/36)=155/324,

https://pandia.ru/text/78/455/images/image032_23.gif" height="38">

P(1<х<5)= ∫ f(x)dx=∫ х/3 dx+∫ 1/3 dx+∫ 0 dx= х2/6 +1/3х =

4/6-1/6+1-2/3=5/6.

Задачи для самостоятельного решения.

2.1. Непрерывная случайная величина Х задана функцией распределения:

0 при х≤0,

F(х)= https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86"> 0 при х≤ π/6,

F(х)= - cos 3x при π/6<х≤ π/3,

1 при х> π/3.

Найти дифференциальную функцию распределения f (x), а также

Р(2π /9<Х< π /2).

2.3.

0 при х≤2,

f(х)= с х при 2<х≤4,

0 при х>4.

2.4. Непрерывная случайная величина Х задана плотностью распределения:

0 при х≤0,

f(х)= с √х при 0<х≤1,

0 при х>1.

Найти: а) число с; б) М(Х), D(X).

2.5.

https://pandia.ru/text/78/455/images/image041_3.jpg" width="36" height="39"> при х,

0 при х .

Найти: а) F(х) и построить ее график; б) M(X),D(X), σ(Х); в) вероятность того, что в четырех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее интервалу (1;4).

2.6. Задана плотность распределения вероятностей непрерывной случайной величины Х:

f(х)= 2(х-2) при х,

0 при х .

Найти: а) F(х) и построить ее график; б) M(X),D(X), σ (Х); в) вероятность того, что в трех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее отрезку .

2.7. Функция f(х) задана в виде:

https://pandia.ru/text/78/455/images/image045_4.jpg" width="43" height="38 src=">.jpg" width="16" height="15">[-√3/2 ; √3/2].

2.8. Функция f(x) задана в виде:

https://pandia.ru/text/78/455/images/image046_5.jpg" width="45" height="36 src="> .jpg" width="16" height="15">[- π /4 ; π /4].

Найти: а) значение постоянной с, при которой функция будет плотностью вероятности некоторой случайной величины Х; б) функцию распределения F(x).

2.9. Случайная величина Х, сосредоточенная на интервале (3;7), задана функцией распределения F(х)= . Найти вероятность того, что

случайная величина Х примет значение: а) меньше 5, б) не меньше 7.

2.10. Случайная величина Х, сосредоточенная на интервале (-1;4),

задана функцией распределения F(х)= . Найти вероятность того, что

случайная величина Х примет значение: а) меньше 2, б) не меньше 4.

2.11.

https://pandia.ru/text/78/455/images/image049_6.jpg" width="43" height="44 src="> .jpg" width="16" height="15">.

Найти: а) число с; б) М(Х); в) вероятность Р(Х> М(Х)).

2.12. Случайная величина задана дифференциальной функцией распределения:

https://pandia.ru/text/78/455/images/image050_3.jpg" width="60" height="38 src=">.jpg" width="16 height=15" height="15">.

Найти: а) М(Х); б) вероятность Р(Х≤М(Х))

2.13. Распределение Ремя задается плотностью вероятности:

https://pandia.ru/text/78/455/images/image052_5.jpg" width="46" height="37"> при х ≥0.

Доказать, что f(x) действительно является плотностью распределения вероятностей.

2.14. Задана плотность распределения вероятностей непрерывной случайной величины Х:

https://pandia.ru/text/78/455/images/image054_3.jpg" width="174" height="136 src=">(рис.4) (рис.5)

2.16. Случайная величина Х распределена по закону «прямоугольного треугольника» в интервале (0;4) (рис.5). Найти аналитическое выражение для плотности вероятности f(x) на всей числовой оси.

Ответы

0 при х≤0,

f(х)= https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86"> 0 при х≤ π/6,

F(х)= 3sin 3x при π/6<х≤ π/3,

0 при х> π/3. Непрерывная случайная величина Х имеет равномерный закон распределения на некотором интервале (а;b), которому принадлежат все возможные значения Х, если плотность распределения вероятностей f(x) постоянная на этом интервале и равна 0 вне его, т. е.

0 при х≤а,

f(х)= при a<х

0 при х≥b.

График функции f(x) изображен на рис. 1

https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86"> 0 при х≤а,

F(х)= https://pandia.ru/text/78/455/images/image077_3.jpg" width="30" height="37">, D(X)=, σ(Х)=.

Задача№1. Случайная величина Х равномерно распределена на отрезке . Найти:

а) плотность распределения вероятностей f(x) и построить ее график;

б) функцию распределения F(x) и построить ее график;

в) M(X),D(X), σ(Х).

Решение: Воспользовавшись формулами, рассмотренными выше, при а=3, b=7, находим:

https://pandia.ru/text/78/455/images/image081_2.jpg" width="22" height="39"> при 3≤х≤7,

0 при х>7

Построим ее график (рис.3):

https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86 src="> 0 при х≤3,

F(х)= https://pandia.ru/text/78/455/images/image084_3.jpg" width="203" height="119 src=">рис.4

D(X) = ==https://pandia.ru/text/78/455/images/image089_1.jpg" width="37" height="43">==https://pandia.ru/text/78/455/images/image092_10.gif" width="14" height="49 src="> 0 при х<0,

f(х)= λе-λх при х≥0.

Функция распределения случайной величины Х, распределенной по показательному закону, задается формулой:

https://pandia.ru/text/78/455/images/image094_4.jpg" width="191" height="126 src=">рис..jpg" width="22" height="30"> , D(X)=, σ (Х)=

Таким образом, математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.

Вероятность попадания Х в интервал (a;b) вычисляется по формуле:

Р(a<Х

Задача №2. Среднее время безотказной работы прибора равно 100 ч. Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:

а) плотность распределения вероятностей;

б) функцию распределения;

в) вероятность того, что время безотказной работы прибора превысит 120 ч.

Решение: По условию математическое распределение M(X)=https://pandia.ru/text/78/455/images/image098_10.gif" height="43 src="> 0 при х<0,

а) f(х)= 0,01е -0,01х при х≥0.

б) F(x)= 0 при х<0,

1- е -0,01х при х≥0.

в) Искомую вероятность найдем, используя функцию распределения:

Р(X>120)=1-F(120)=1-(1- е -1,2)= е -1,2≈0,3.

§ 3.Нормальный закон распределения

Определение: Непрерывная случайная величина Х имеет нормальный закон распределения (закон Гаусса), если ее плотность распределения имеет вид:

,

где m=M(X), σ2=D(X), σ>0.

Кривую нормального закона распределения называют нормальной или гауссовой кривой (рис.7)

Нормальная кривая симметрична относительно прямой х=m, имеет максимум в т. х=а, равный .

Функция распределения случайной величины Х, распределенной по нормальному закону, выражается через функцию Лапласа Ф (х) по формуле:

,

где - функция Лапласа.

Замечание: Функция Ф(х) является нечетной (Ф(-х)=-Ф(х)), кроме того, при х>5 можно считать Ф(х) ≈1/2.

График функции распределения F(x) изображен на рис. 8

https://pandia.ru/text/78/455/images/image106_4.jpg" width="218" height="33">

Вероятность того, что абсолютная величина отклонения меньше положительного числа δ вычисляется по формуле:

В частности, при m=0 справедливо равенство:

«Правило трех сигм»

Если случайная величина Х имеет нормальный закон распределения с параметрами m и σ, то практически достоверно, что ее значение заключены в интервале (a-3σ; a+3σ), т. к.

https://pandia.ru/text/78/455/images/image110_2.jpg" width="157" height="57 src=">а)

б) Воспользуемся формулой:

https://pandia.ru/text/78/455/images/image112_2.jpg" width="369" height="38 src=">

По таблице значений функции Ф(х) находим Ф(1,5)=0,4332, Ф(1)=0,3413.

Итак, искомая вероятность:

P(28

Задачи для самостоятельной работы

3.1. Случайная величина Х равномерно распределена в интервале (-3;5). Найдите:

б)функции распределения F(x);

в)числовые характеристики;

г)вероятность Р(4<х<6).

3.2. Случайная величина Х равномерно распределена на отрезке . Найдите:

а) плотность распределения f(x);

б)функции распределения F(x);

в)числовые характеристики;

г)вероятность Р(3≤х≤6).

3.3. На шоссе установлен автоматический светофор, в котором 2 минуты для транспорта горит зеленый свет, 3 секунды желтый и 30 секунд красный и т. д. Машина проезжает по шоссе в случайный момент времени. Найти вероятность того, что машина проедет мимо светофора, не останавливаясь.

3.4. Поезда метрополитена идут регулярно с интервалом 2 минуты. Пассажир выходит на платформу в случайный момент времени. Какова вероятность того, что ждать поезд пассажиру придется больше 50 секунд. Найти математическое ожидание случайной величины Х - время ожидания поезда.

3.5. Найти дисперсию и среднее квадратическое отклонение показательного распределения, заданного функцией распределения:

F(x)= 0 при х<0,

1-е-8х при х≥0.

3.6. Непрерывная случайная величина Х задана плотностью распределения вероятностей:

f(x)= 0 при х<0,

0,7 е-0,7х при х≥0.

а) Назовите закон распределения рассматриваемой случайной величины.

б) Найдите функцию распределения F(X) и числовые характеристики случайной величины Х.

3.7. Случайная величина Х распределена по показательному закону, заданному плотностью распределения вероятностей:

f(x)= 0 при х<0,

0,4 е-0,4 х при х≥0.

Найти вероятность того, что в результате испытания Х примет значение из интервала (2,5;5).

3.8. Непрерывная случайная величина Х распределена по показательному закону, заданному функцией распределения:

F(x)= 0 при х<0,

1-е-0,6х при х≥0

Найти вероятность того, что в результате испытания Х примет значение из отрезка .

3.9. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины соответственно равны 8 и 2. Найдите:

а) плотность распределения f(x);

б) вероятность того, что в результате испытания Х примет значение из интервала (10;14).

3.10. Случайная величина Х распределена нормально с математическим ожиданием 3,5 и дисперсией 0,04. Найдите:

а) плотность распределения f(x);

б) вероятность того, что в результате испытания Х примет значение из отрезка .

3.11. Случайная величина Х распределена нормально с M(X)=0 и D(X)=1. Какое из событий: |Х|≤0,6 или |Х|≥0,6 имеет большую вероятность?

3.12. Случайная величина Х распределена нормально с M(X)=0 и D(X)=1.Из какого интервала (-0,5;-0,1) или (1;2) при одном испытании она примет значение с большей вероятностью?

3.13. Текущая цена за одну акцию может быть смоделирована с помощью нормального закона распределения с M(X)=10ден. ед. и σ (Х)=0,3 ден. ед. Найти:

а) вероятность того, что текущая цена акции будет от 9,8 ден. ед. до 10,4 ден. ед.;

б)с помощью «правила трех сигм» найти границы, в которых будет находится текущая цена акции.

3.14. Производится взвешивание вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отношением σ=5г. Найти вероятность того, что в четырех независимых опытах ошибка при трех взвешиваниях не произойдет по абсолютной величине 3г.

3.15. Случайная величина Х распределена нормально с M(X)=12,6. Вероятность попадания случайной величины в интервал (11,4;13,8) равна 0,6826. Найдите среднее квадратическое отклонение σ.

3.16. Случайная величина Х распределена нормально с M(X)=12 и D(X)=36.Найти интервал, в который с вероятностью 0,9973 попадет в результате испытания случайная величина Х.

3.17. Деталь, изготовленная автоматом, считается бракованной, если отклонение Х ее контролируемого параметра от номинала превышает по модулю 2 единицы измерения . Предполагается, что случайная величина Х распределена нормально с M(X)=0 и σ(Х)=0,7. Сколько процентов бракованных деталей выдает автомат?

3.18. Параметр Х детали распределен нормально с математическим ожиданием 2, равным номиналу, и средним квадратическим отклонением 0,014. Найти вероятность того, что отклонение Х от номинала по модулю не превысит 1% номинала.

Ответы

https://pandia.ru/text/78/455/images/image116_9.gif" width="14" height="110 src=">

б) 0 при х≤-3,

F(х)= left">

3.10. а)f(x)= ,

б) Р(3,1≤Х≤3,7) ≈0,8185.

3.11. |x|≥0,6.

3.12. (-0,5;-0,1).

3.13. а) Р(9,8≤Х≤10,4) ≈0,6562.

3.14. 0,111.

3.15. σ=1,2.

3.16. (-6;30).

3.17. 0,4%.