Как направлено нормальное ускорение точки. Тангенциальное, или касательное ускорение. Что будем делать с полученным материалом

Движение материальной точки по криволинейной траектории всегда является ускоренным, поскольку если даже скорость не изменяется по численному значению, то всегда изменяется по направлению.

В общем случае ускорение при криволинейном движении можно представить в виде векторной суммы касательного (или тангенциального) ускорения t и нормального ускорения n : = t + n - рис. 1.4.

Касательное ускорение характеризует быстроту изменения скорости по модулю. Значение этого ускорения будет:

Нормальное ускорение характеризует быстроту изменения скорости по направлению. Численное значение этого ускорения, где r - радиус соприкасающейся окружности, т.е. окружности, проведенной через три бесконечно близкие точки B ¢, A, B , лежащих на кривой (рис. 1.5). Вектор n направлен по нормали к траектории к центру кривизны (центру соприкасающейся окружности).

Численное значение полного ускорения

где - угловая скорость.

где -угловое ускорение.

Угловое ускорение численно равно изменению угловой скорости за единицу времени.

В заключение приведём таблицу, в которой устанавливается аналогия между линейными и угловыми кинематическими параметрами движения.

Конец работы -

Эта тема принадлежит разделу:

Краткий курс физики

Министерство образования и науки Украины.. одесская национальная морская академия..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные единицы СИ
В настоящее время общепринятой является Международная система единиц - СИ. Эта система содержит семь основных единиц: метр, килограмм, секунда, моль, ампер, кельвин, кандела и две дополнительные -

Механика
Механика - наука о механическом движении материальных тел и происходящих при этом взаимодействиях между ними. Под механическим движением понимают изменение с течением времени взаимного пол

Законы Ньютона
Динамика - раздел механики, в котором изучается движение материальных тел под воздействием приложенных к ним сил. В основе механики лежат законы Ньютона. Первый закон Ньютона

Закон сохранения импульса
Рассмотрим вывод закона сохранения импульса на основе второго и третьего законов Ньютона.

Связь между работой и изменением кинетической энергии
Рис. 3.3 Пусть тело массой т движется вдоль оси х под

Связь между работой и изменением потенциальной энергии
Рис. 3.4 Эту связь мы установим на примере работы силы тяжес

Закон сохранения механической энергии
Рассмотрим замкнутую консервативную систему тел. Это означает, что на тела системы не действуют внешние силы, а внутренние силы по своей природе являются консервативными. Полной механическ

Соударения
Рассмотрим важный случай взаимодействия твёрдых тел - соударения. Соударением (ударом) называется явление конечного изменения скоростей твёрдых тел за весьма малые промежутки времени при их непо

Основной закон динамики вращательного движения
Рис. 4.3 Для вывода этого закона рассмотрим простейший случа

Закон сохранения момента импульса
Рассмотрим изолированное тело, т.е. такое тело на которое не действует внешний момент сил. Тогда Mdt = 0 и из (4.5) следует d(Iw)=0, т.е. Iw=const. Если изолированная система состоит

Гироскоп
Гироскопом называется симметричное твёрдое тело, вращающееся вокруг оси, совпадающей с осью симметрии тела, проходящей через центр масс, и соответствующей наибольшему собственному моменту инерции.

Общая характеристика колебательных процессов. Гармонические колебания
Колебаниями называются движения или процессы, обладающие той или иной степенью повторяемости во времени. В технике устройства, использующие колебательные процессы могут выполнять оп

Колебания пружинного маятника
Рис. 6.1 Укрепим на конце пружины тело массой m, которое мож

Энергия гармонического колебания
Рассмотрим теперь на примере пружинного маятника процессы изменения энергии в гармоническом колебании. Очевидно, что полная энергия пружинного маятника W=Wk+Wp, где кинетическая

Сложение гармонических колебаний одинакового направления
Решение ряда вопросов, в частности, сложение нескольких колебаний одинакового направления, значительно облегчается, если изображать колебания графически, в виде векторов на плоскости. Полученная та

Затухающие колебания
В реальных условиях в системах, совершающих колебания, всегда присутствуют силы сопротивления. В результате система постепенно расходует свою энергию на выполнение работы против сил сопротивления и

Вынужденные колебания
В реальных условиях колеблющаяся система постепенно теряет энергию на преодоление сил трения, поэтому колебания являются затухающими. Чтобы колебания были незатухающими, необходимо каким-то образом

Упругие (механические) волны
Процесс распространения возмущений в веществе или поле, сопровождающийся переносом энергии, называется волной. Упругие волны - процесс распространения в упругой среде механически

Интерференция волн
Интерференцией называется явление наложения волн от двух когерентных источников, в результате которого происходит перераспределение интенсивности волн в пространстве, т.е. возникают интерференци

Стоячие волны
Частным случаем интерференции является образование стоячих волн. Стоячие волны возникают при интерференции двух встречных когерентных волн с одинаковой амплитудой. Такая ситуация может возни

Эффект Допплера в акустике
Звуковыми волнами называют упругие волны с частотами от 16 до 20000 Гц, воспринимаемые органами слуха человека. Звуковые волны в жидких и газообразных средах являются продольными. В твёрды

Основное уравнение молекулярно-кинетической теории газов
Рассмотрим в качестве простейшей физической модели идеальный газ. Идеальным называется такой газ, для которого выполняются следующие условия: 1) размеры молекул настолько малы, ч

Распределение молекул по скоростям
Рис.16.1 Предположим, чтонам удалось измерить скорости всех

Барометрическая формула
Рассмотрим поведение идеального газа в поле силы тяжести. Как известно, по мере подъёма от поверхности Земли давление атмосферы уменьшается. Найдём зависимость давления атмосферы от высоты

Распределение Больцмана
Выразим давление газа на высотах h иh0 через соответствующее число молекул в единице объёмап ип0, считая, что на разных высотахT=const: P =

Первое начало термодинамики и его применение к изопроцессам
Первое начало термодинамики - это обобщение закона сохранения энергии с учётом тепловых процессов. Его формулировка: количество теплоты, сообщённое системе, расходуется на выполнение работы

Число степеней свободы. Внутренняя энергия идеального газа
Числом степеней свободы называется число независимых координат, которыми описывается движение тела в пространстве. Материальная точка имеет три степени свободы, поскольку при её движении в п

Адиабатный процесс
Адиабатным называется процесс, происходящий без теплообмена с окружающей средой. В адиабатном процессеdQ = 0, поэтому первое начало термодинамики применительно к этому процессу прин

Обратимые и необратимые процессы. Круговые процессы (циклы). Принцип действия тепловой машины
Обратимыми называются такие процессы, которые удовлетворяют следующим условиям. 1. После прохождения этих процессов и возвращения термодинамической системы в исходное состояние в

Идеальная тепловая машина Карно
Рис. 25.1 В 1827 г. французский военный инженер С. Карно, ре

Второе начало термодинамики
Первое начало термодинамики, которое является обобщением закона сохранения энергии с учётом тепловых процессов, не указывает на направленность протекания различных процессов в природе. Так, первое

Невозможен процесс, единственным результатом которого была бы передача теплоты от холодного тела к горячему
В холодильной машине теплота передаётся от холодного тела (морозильной камеры) в более нагретую окружающую среду. Казалось бы, что это противоречит второму началу термодинамики. На самом деле проти

Энтропия
Введём теперь новый параметр состояния термодинамической системы - энтропию, которая принципиально отличается от других параметров состояния направленностью своего изменения. Элементарное измене

Дискретность электрического заряда. Закон сохранения электрического заряда
Источником электростатического поля служит электрический заряд - внутренняя характеристика элементарной частицы, определяющая ее способность вступать в электромагнитные взаимодействия.

Энергия электростатического поля
Найдём вначале энергию заряженного плоского конденсатора. Очевидно, что эта энергия численно равна работе, которую нужно совершить, чтобы разрядить конденсатор.

Основные характеристики тока
Электрическим током называется упорядоченное (направленное) движение заряженных частиц. Сила тока численно равна заряду, прошедшему через поперечное сечение проводника за единицу

Закон Ома для однородного участка цепи
Однородным называется участок цепи, не содержащий источника ЭДС. Ом экспериментально установил, что сила тока на однородном участке цепи пропорциональна напряжению и обратно пропорц

Закон Джоуля - Ленца
Джоуль и независимо от него Ленц экспериментально установили, что количество теплоты, выделенной в проводнике с сопротивлением R за время dt, пропорционально квадрату силы тока, сопротивлен

Правила Кирхгофа
Рис. 39.1 Для расчёта сложных цепей постоянного тока применя

Контактная разность потенциалов
Если два разнородных металлических проводника привести в контакт, то электроны получают возможность переходить из одного проводника в другой и обратно. Равновесное состояние такой системы

Эффект Зеебека
Рис. 41.1 В замкнутой цепи из двух разнородных металлов на г

Эффект Пельтье
Второе термоэлектрическое явление - эффект Пельтъе состоит в том, что при пропускании электрического тока через контакт двух разнородных проводников в нём происходит выделение или поглощени

Линейное перемещение, линейная скорость, линейное ускорение.

Перемеще́ние (в кинематике) - изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещением называют вектор, характеризующий это изменение. Обладает свойством аддитивности. Длина отрезка - это модуль перемещения, измеряется в метрах (СИ).

Можно определить перемещение, как изменение радиус-вектора точки: .

Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление перемещения не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.

Вектор Dr = r -r 0 , проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиуса-вектора точки за рассматриваемый промежуток времени), называется перемещением .

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |Dr | равен пройденному пути Ds .
Линейная скорость тела в механике

Скорость

Для характеристики движения материальной точки вводится векторная величина - скорость, которой определяется как быстрота движения, так и его направ­ление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответствует радиус-вектор r 0 (рис. 3). В течение малого промежутка времени Dt точка пройдет путь Ds и получит элементарное (бесконечно малое) перемещение Dr.

Вектором средней скорости называется отношение приращения Dr радиу­са-вектора точки к промежутку времени Dt :

Направление вектора средней скорости совпадает с направлением Dr. При неог­раниченном уменьшении Dt средняя скорость стремится к предельному значению, которое называетсямгновенной скоростью v:

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени. Так как секущая в пре­деле совпадает с касательной, то вектор скорости v направлен по касательной к траек­тории в сторону движения (рис. 3). По мере уменьшения Dt путь Ds все больше будет приближаться к |Dr|, поэтому модуль мгновенной скорости

Таким образом, модуль мгновенной скорости равен первой производной пути по времени:

Принеравномерном движении - модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной áv ñ -средней скоро­стью неравномерного движения:

Из рис. 3 вытекает, что áv ñ> |ávñ|, так как Ds > |Dr|, и только в случае прямолиней­ного движения

Если выражение ds = v dt (см. формулу (2.2)) проинтегрировать по времени в пре­делах от t до t + Dt , то найдем длину пути, пройденного точкой за время Dt :

В случаеравномерного движения числовое значение мгновенной скорости постоянно; тогда выражение (2.3) примет вид

Длина пути, пройденного точкой за промежуток времени от t 1 до t 2 , дается интегралом

Ускорение и его составляющие

В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени. Физической величиной, характеризующей быстроту изменения скорости по модулю и направлению, является ускорение .

Рассмотримплоское движение, т.е. движение, при котором все участки траектории точки лежат в одной плоскости. Пусть вектор v задает скорость точки А в момент времени t. За время Dt движущаяся точка перешла в положение В и приобрела скорость, отличную от v как по модулю, так и направлению и равную v 1 = v + Dv. Перенесем вектор v 1 в точку А и найдем Dv (рис. 4).

Средним ускорением неравномерного движения в интервале от t до t + Dt называется векторная величина, равная отношению изменения скорости Dv к интервалу вре­мени Dt

Мгновенным ускорением а (ускорением) материальной точки в момент време­ни t будет предел среднего ускорения:

Таким образом, ускорение a есть векторная величина, равная первой производной скорости по времени.

Разложим вектор Dv на две составляющие. Для этого из точки А (рис. 4) по направлению скорости v отложим вектор , по модулю равный v 1 . Очевидно, что вектор , равный , определяет изменение скорости за время Dt по моду­лю : . Вторая же составляющая вектора Dv характеризует изменение ско­рости за время Dt по направлению.

Тангенциальное и нормальное ускорение.

Тангенциа́льное ускоре́ние - компонента ускорения, направленная по касательной к траектории движения. Совпадает с направлением вектора скорости при ускоренном движении и противоположно направлено при замедленном. Характеризует изменение модуля скорости. Обозначается обычно или (, итд в соответствии с тем, какая буква выбрана для обозначения ускорения вообще в данном тексте).

Иногда под тангенциальным ускорением понимают проекцию вектора тангенциального ускорения - как он определен выше - на единичный вектор касательной к траектории, что совпадает с проекцией (полного) вектора ускорения на единичный вектор касательной то есть соответствующий коэффициент разложения по сопутствующему базису. В этом случае используется не векторное обозначение, а «скалярное» - как обычно для проекции или координаты вектора - .

Величину тангенциального ускорения - в смысле проекции вектора ускорения на единичный касательный вектор траектории - можно выразить так:

где - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

Если использовать для единичного касательного вектора обозначение , то можно записать тангенциальное ускорение в векторном виде:

Вывод

Выражение для тангенциального ускорения можно найти, продифференцировав по времени вектор скорости, представленный в виде через единичный вектор касательной :

где первое слагаемое - тангенциальное ускорение, а второе - нормальное ускорение.

Здесь использовано обозначение для единичного вектора нормали к траектории и - для текущей длины траектории (); в последнем переходе также использовано очевидное

и, из геометрических соображений,

Центростремительное ускорение(нормальное) - часть полного ускорения точки, обусловленного кривизной траектории и скоростью движения по ней материальной точки. Такое ускорение направлено к центру кривизны траектории, чем и обусловлен термин. Формально и по существу термин центростремительное ускорение в целом совпадает с термином нормальное ускорение, различаясь скорее лишь стилистически (иногда исторически).

Особенно часто о центростремительном ускорении говорят, когда речь идет о равномерном движении по окружности или при движении, более или менее приближенном к этому частному случаю.

Элементарная формула

где - нормальное (центростремительное) ускорение, - (мгновенная) линейная скорость движения по траектории, - (мгновенная) угловая скорость этого движения относительно центра кривизны траектории, - радиус кривизны траектории в данной точке. (Cвязь между первой формулой и второй очевидна, учитывая).

Выражения выше включают абсолютные величины. Их легко записать в векторном виде, домножив на - единичный вектор от центра кривизны траектории к данной ее точки:


Эти формулы равно применимы к случаю движения с постоянной (по абсолютной величине) скоростью, так и к произвольному случаю. Однако во втором надо иметь в виду, что центростремительное ускорение не есть полный вектор ускорения, а лишь его составляющая, перпендикулярная траектории (или, что то же, перпендикулярная вектору мгновенной скорости); в полный же вектор ускорения тогда входит еще и тангенциальная составляющая (тангенциальное ускорение) , по направлению совпадающее с касательной к траектории (или, что то же, с мгновенной скоростью).

Вывод

То, что разложение вектора ускорения на компоненты - одну вдоль касательного к траектории вектора (тангенциальное ускорение) и другую ортогональную ему (нормальное ускорение) - может быть удобным и полезным, довольно очевидно само по себе. Это усугубляется тем, что при движении с постоянной по величине скоростью тангенциальная составляющая будет равной нулю, то есть в этом важном частном случае остается только нормальная составляющая. Кроме того, как можно увидеть ниже, каждая из этих составляющих имеет ярко выраженные собственные свойства и структуру, и нормальное ускорение содержит в структуре своей формулы достаточно важное и нетривиальное геометрическое наполнение. Не говоря уже о важном частном случае движения по окружности (который, к тому же, практически без изменения может быть обобщен и на общий случай).

т. е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

Вторая составляющая ускорения, равная

называется нормальной составляющей ускорения и направлена по нормали к траектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением ).

Итак, тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории), а нормальная состав­ляющая ускорения - быстроту изменения скорости по направлению (направлена к цен­тру кривизны траектории).

В зависимости от тангенциальной и нормальной составляющих ускорения движе­ние можно классифицировать следующим образом:

1) , а n = 0 - прямолинейное равномерное движение;

2) , а n = 0 - прямолинейное равнопеременное движение. При таком виде движения

Если начальный момент времени t 1 =0, а начальная скорость v 1 =v 0 , то, обозначив t 2 =t и v 2 =v, получим , откуда

Проинтегрировав эту формулу в пределах от нуля до произвольного момента времени t, найдем, что длина пути, пройденного точкой, в случае равнопеременного движения

· 3) , а n = 0- прямолинейное движение с переменным ускорением;

· 4) , а n = const. При скорость по модулю не изменяется, а изменяется по направлению. Из формулы a n =v 2 /r следует, что радиус кривизны должен быть посто­янным. Следовательно, движение по окружности является равномерным;

· 5) , - равномерное криволинейное движение;

· 6) , - криволинейное равнопеременное движение;

· 7) , - криволинейное движение с переменным ускорением.

2) Твёрдое тело, движущееся в трёхмерном пространстве, максимально может иметь шесть степеней свободы: три поступательных и три вращательных

Элементарное угловое перемещение – это вектор, направленный вдоль оси по правилу правого винта и численно равный углу

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Единица - ради­ан в секунду (рад/с).

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору (рис.8), при замедлен­ном - противонаправлен ему (рис.9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

При движении точки по кривой линейная скорость направлена

по касательной к кривой и по модулю равна произведению

угловой скорости на радиус кривизны кривой.(связь)

3) Первый закон Ньютона : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние . Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью . Поэтому первый закон Ньютона называют также законом инерции .

Механическое движение относительно, и его характер зависит от системы отсчета. Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами отсчета . Инерциальной системой отсчета является такая система отсчета, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется равномерно и прямолинейно. Первый закон Ньютона утверждает существование инерциальных систем отсчета.

Второй закон Ньютона - основной закон динамики поступательного движения - от­вечает на вопрос, как изменяется механическое движение материальной точки (тела) под действием приложенных к ней сил.

Масса тела - физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса ) и гравитационные (гравитационная масса ) свойства. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10 –12 их значения).

Итак, сила - это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Векторная величина

численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называется импульсом (количеством движения) этой материаль­ной точки.

Подставляя (6.6) в (6.5), получим

Это выражение - более общая формулировка второго закона Ньютона : скорость изме­нения импульса материальной точки равна действующей на нее силе. Выражение называется уравнением движения материальной точки .

Третий закон Ньютона

Взаимодействие между материальными точками (телами) определяется третьим зако­ном Ньютона : всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки:

F 12 = – F 21 , (7.1)

где F 12 - сила, действующая на первую материальную точку со стороны второй;

F 21 - сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и явля­ются силами одной природы.

Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что и для системы материальных точек взаимодействие сводится к силам парного взаимодействия между материальными точками.

Си́ла упру́гости - сила, возникающая при деформации тела и противодействующая этой деформации.

В случае упругих деформаций является потенциальной. Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. В простейшем случае растяжения/сжатия тела сила упругости направлена противоположно смещению частиц тела, перпендикулярно поверхности.

Вектор силы противоположен направлению деформации тела (смещению его молекул).

Закон Гука

В простейшем случае одномерных малых упругих деформаций формула для силы упругости имеет вид: где k - жёсткость тела, x - величина деформации.

СИЛА ТЯЖЕСТИ, сила P, действующая на любое тело, находящееся вблизи земной поверхности, и определяемая как геометрическая сумма силы притяжения Земли F и центробежной силы инерции Q, учитывающей эффект суточного вращения Земли. Направление силы тяжести - вертикаль в данной точке земной поверхности.

существова­нием силы трения , которая препятствует скольжению соприкасающихся тел друг относительно друга. Силы трения зависят от относительных скоростей тел.

Различают внешнее (сухое) и внутреннее (жидкое или вязкое) трение. Внешним трением называется трение, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении. Если соприкасающиеся тела неподвижны друг относительно друга, говорят о трении покоя, если же происходит относительное перемещение этих тел, то в зависимости от характера их относительного движения говорят о трении скольжения , качения или верчения .

Внутренним трением называется трение между частями одного и того же тела, например между различными слоями жидкости или газа, скорости которых меняются от слоя к слою. В отличие от внешнего трения здесь отсутствует трение покоя. Если тела скользят относительно друг друга и разделены прослойкой вязкой жидкости (смазки), то трение происходит в слое смазки. В таком случае говорят о гидродинамическом трении (слой смазки достаточно толстый) и граничном трении (толщина смазоч­ной прослойки »0,1 мкм и меньше).

опытным путем установили следующий закон : сила трения скольжения F тр пропорциональна силе N нормального давления, с которой одно тело действует на другое:

F тр = f N ,

где f - коэффициент трения скольжения, зависящий от свойств соприкасающихся поверхностей.

f = tga 0 .

Таким образом, коэффициент трения равен тангенсу угла a 0 , при котором начинается скольжение тела по наклонной плоскости.

Для гладких поверхностей определенную роль начинает играть межмолекулярное притяжение. Для них применяется закон трения скольжения

F тр = f ист (N + Sp 0) ,

где р 0 - добавочное давление, обусловленное силами межмолекулярного притяжения, которые быстро уменьшаются с увеличением расстояния между частицами; S - пло­щадь контакта между телами; f ист - истинный коэффициент трения скольжения.

Сила трения качения определяется по закону, установленному Кулоном:

F тр =f к N/r , (8.1)

где r - радиус катящегося тела; f к - коэффициент трения качения, имеющий размер­ность dim f к =L. Из (8.1) следует, что сила трения качения обратно пропорциональна радиусу катящегося тела.

Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями.

где - импульс системы. Таким образом, производная по времени от им­пульса механической системы равна геометрической сумме внешних сил, действующих на систему.

Последнее выражение и является законом сохранения импульса : импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Центром масс (или центром инерции ) системы материальных точек называется воображаемая точка С ,положение которой характеризует распределение массы этой системы. Ее ра­диус-вектор равен

где m i и r i - соответственно масса и радиус-вектор i -й материальной точки; n - число материальных точек в системе; – масса системы. Скорость центра масс

Учитывая, что pi = m i v i , a есть импульс р системы, можно написать

т. е. импульс системы равен произведению массы системы на скорость ее центра масс.

Подставив выражение (9.2) в уравнение (9.1), получим

т. е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, приложенных к системе. Выражение (9.3) представляет собойзакон движения центра масс.

В соответствии с (9.2) из закона сохранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается непо­движным.

5) Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r , проведенного из точ­ки О в точку А приложения силы, на силу F (рис. 25):

Здесь М - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к F. Модуль момента силы

где a- угол между r и F; r sina = l - кратчайшее расстояние между линией действия силы и точкой О - плечо силы.

Моментом силы относительно неподвижной оси z называется скалярная величина M z , равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z (рис. 26). Значение момента М z не зависит от выбора положения точки О на оси z.

Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью:

Кинетическую энергию вращающегося тела найдем как сумму кинетических энер­гий его элементарных объемов:

Используя выражение (17.1), получаем

где J z - момент инерции тела относительно оси z. Таким образом, кинетическая энергия вращающегося тела

Из сравнения формулы (17.2) с выражением (12.1) для кинетической энергии тела движущегося поступательно (T=mv 2 /2), следует, что момент инерции - мера инертности тела при вращательном движении. Формула (17.2) справедлива для тела вращающегося вокруг неподвижной оси.

В случае плоского движения тела, например цилиндра, скатывающегося с наклонной плоскости без скольжения, энергия движения складывается из энергии поступательного движения и энергии вращения:

где m - масса катящегося тела; v c - скорость центра масс тела; Jc - момент инер­ции тела относительно оси, проходящей через его центр масс; w - угловая скорость тела.

6) Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы . Если тело движется прямолинейно и на него действует постоянная сила F, которая составляет некоторый угол  с направлением перемещения, то работа этой силы равна произведению проекции силы F s на направление перемещения (F s = F cos), умноженной на перемещение точки приложения силы:

В общем случае сила может изменяться как по модулю, так и по направлению, поэтому формулой (11.1) пользоваться нельзя. Если, однако, рассмотреть элементар­ное перемещение dr, то силу F можно считать постоянной, а движение точки ее приложения - прямолинейным. Элементарной работой силы F на перемещении dr называется скалярная величина

где  - угол между векторами F и dr; ds = |dr| - элементарный путь; F s - проекция вектора F на вектор dr (рис. 13).

Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу

Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности :

За время dt силаF совершает работу Fdr, и мощность, развиваемая этой силой, в данный момент времени

т. е. равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы; N - величина скалярная.

Единица мощности -ватт (Вт): 1 Вт - мощность, при которой за время 1 с совершается работа 1 Дж (1 Вт = 1 Дж/с).

Кинетическая энергия механической системы - это энергия механического движения этой системы.

Сила F, действуя на покоящееся тело и вызывая его движение, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона и умножая на перемещение dr получаем

Потенциальная энергия - механическая энергия системы тел, определяемая их вза­имным расположением и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными , а силы, действующие в них, - консервативными . Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипатнвной ; ее примером является сила трения.

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна

где высота h отсчитывается от нулевого уровня, для которого П 0 =0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (кинетическая энергия всегда положительна!). Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h" ), П= -mgh".

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна деформации:

где F x уп p - проекция силы упругости на ось х ; k - коэффициент упругости (для пружины - жесткость ), а знак минус указывает, что F x уп p направлена в сторону, противоположную деформации x .

По третьему закону Ньютона, деформирующая сила равна по модулю силе уп­ругости и противоположно ей направлена, т. е.

Элементарная работа dA, совершаемая силой F x при бесконечно малой деформации dx, равна

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

Потенциальная энергия системы является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам.

При переходе системы из состояния 1 в какое-либо состояние 2

т. е. изменение полной механической энергии системы при переходе из одного состоя­ния в другое равно работе, совершенной при этом внешними неконсервативными силами. Если внешние неконсервативные силы отсутствуют, то из (13.2) следует, что

d (T +П) = 0,

т. е. полная механическая энергия системы сохраняется постоянной. Выражение (13.3) представляет собой закон сохранение механической энергии : в системе тел, между которыми действуют только консервативные силы, полная механическая энергия со­храняется, т. е. не изменяется со временем.

И зачем она нужна. Мы уже знаем, что такое система отсчета, относительность движения и материальная точка. Что ж, пора двигаться дальше! Здесь мы рассмотрим основные понятия кинематики, соберем вместе самые полезные формулы по основам кинематики и приведем практический пример решения задачи.

Решим такую задачу: точка движется по окружности радиусом 4 метра. Закон ее движения выражается уравнением S=A+Bt^2. А=8м, В=-2м/с^2. В какой момент времени нормальное ускорение точки равно 9 м/с^2? Найти скорость, тангенциальное и полное ускорение точки для этого момента времени.

Решение: мы знаем, что для того, чтобы найти скорость нужно взять первую производную по времени от закона движения, а нормальное ускорение равняется частному квадрата скорости и радиуса окружности, по которой точка движется. Вооружившись этими знаниями, найдем искомые величины.

Нужна помощь в решении задач? Профессиональный студенческий сервис готов оказать ее.

Кинематика точки, кинематика твердого тела, поступательное движение, вращательное движение, плоскопараллельное движение, теорема о проекциях скоростей, мгновенный центр скоростей, определение скорости и ускорений точек плоского тела, сложное движение точки

Содержание

Кинематика твердого тела

Чтобы однозначно определить положение твердого тела, нужно указать три координаты (x A , y A , z A ) одной из точек A тела и три угла поворота. Таким образом, положение твердого тела определяется шестью координатами. То есть твердое тело имеет шесть степеней свободы.

В общем случае, зависимость координат точек твердого тела относительно неподвижной системы координат определяется довольно громоздкими формулами. Однако скорости и ускорения точек определяются довольно просто. Для этого нужно знать зависимость координат от времени одной, произвольным образом выбранной, точки A и вектора угловой скорости . Дифференцируя по времени, находим скорость и ускорение точки A и угловое ускорение тела :
; ; .
Тогда скорость и ускорение точки тела с радиус вектором определяется по формулам:
(1) ;
(2) .
Здесь и далее, произведения векторов в квадратных скобках означают векторные произведения.

Отметим, что вектор угловой скорости одинаков для всех точек тела . Он не зависит от координат точек тела. Также вектор углового ускорения одинаков для всех точек тела .

См. вывод формул (1) и (2) на странице: Скорость и ускорение точек твердого тела > > >

Поступательное движение твердого тела

При поступательном движении, угловая скорость равна нулю. Скорости всех точек тела равны. Любая прямая, проведенная в теле, перемещается, оставаясь параллельной своему начальному направлению. Таким образом, для изучения движения твердого тела при поступательном движении, достаточно изучить движение одной любой точки этого тела. См. раздел .

Равноускоренное движение

Рассмотрим случай равноускоренного движения. Пусть проекция ускорения точки тела на ось x постоянна и равна a x . Тогда проекция скорости v x и x - координата этой точки зависят от времени t по закону:
v x = v x0 + a x t ;
,
где v x0 и x 0 - скорость и координата точки в начальный момент времени t = 0 .

Вращательное движение твердого тела

Рассмотрим тело, которое вращается вокруг неподвижной оси. Выберем неподвижную систему координат Oxyz с центром в точке O . Направим ось z вдоль оси вращения. Считаем, что z - координаты всех точек тела остаются постоянными. Тогда движение происходит в плоскости xy . Угловая скорость ω и угловое ускорение ε направлены вдоль оси z :
; .
Пусть φ - угол поворота тела, который зависит от времени t . Дифференцируя по времени, находим проекции угловой скорости и углового ускорения на ось z :
;
.

Рассмотрим движение точки M , которая находится на расстоянии r от оси вращения. Траекторией движения является окружность (или дуга окружности) радиуса r .
Скорость точки :
v = ω r .
Вектор скорости направлен по касательной к траектории.
Касательное ускорение :
a τ = ε r .
Касательное ускорение также направлено по касательной к траектории.
Нормальное ускорение :
.
Оно направлено к оси вращения O .
Полное ускорение :
.
Поскольку векторы и перпендикулярны друг другу, то модуль ускорения :
.

Равноускоренное движение

В случае равноускоренного движения, при котором угловое ускорение постоянно и равно ε , угловая скорость ω и угол поворота φ изменяются со временем t по закону:
ω = ω 0 + ε t ;
,
где ω 0 и φ 0 - угловая скорость и угол поворота в начальный момент времени t = 0 .

Плоскопараллельное движение твердого тела

Плоскопараллельным или плоским называется такое движение твердого тела, при котором все его точки перемещаются параллельно некоторой фиксированной плоскости. Выберем прямоугольную систему координат Oxyz . Оси x и y расположим в плоскости, в которой происходит перемещение точек тела. Тогда все z - координаты точек тела остаются постоянными, z - компоненты скоростей и ускорений равны нулю. Векторы угловой скорости и углового ускорения наоборот, направлены вдоль оси z . Их x и y компоненты равны нулю.

Проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу.
v A cos α = v B cos β .

Мгновенный центр скоростей

Мгновенным центром скоростей называется точка плоской фигуры, скорость которой в данный момент равна нулю.

Чтобы определить положение мгновенного центра скоростей P плоской фигуры, нужно знать только направления скоростей и двух его точек A и B . Для этого через точку A проводим прямую, перпендикулярную направлению скорости . Через точку B проводим прямую, перпендикулярную направлению скорости . Точка пересечения этих прямых есть мгновенный центр скоростей P . Угловая скорость вращения тела:
.


Если скорости двух точек параллельны друг другу, то ω = 0 . Скорости всех точек тела равны друг другу (в данный момент времени).

Если известна скорость какой либо точки A плоского тела и его угловая скорость ω , то скорость произвольной точки M определяется по формуле (1) , которую можно представить в виде суммы поступательного и вращательного движения:
,
где - скорость вращательного движения точки M относительно точки A . То есть скорость, которую имела бы точка M при вращении по окружности радиуса |AM| с угловой скоростью ω , если бы точка A была неподвижной.
Модуль относительной скорости:
v MA = ω |AM| .
Вектор направлен по касательной к окружности радиуса |AM| с центром в точке A .

Определение ускорений точек плоского тела выполняется с применением формулы (2) . Ускорение любой точки M равно векторной сумме ускорения некоторой точки A и ускорения точки M при вращении вокруг точки A , считая точку A неподвижной:
.
можно разложить на касательное и нормальное ускорения:
.
Касательное ускорение направлено по касательной к траектории. Нормальное ускорение направлено из точки M к точке A . Здесь ω и ε - угловая скорость и угловое ускорение тела.

Сложное движение точки

Пусть O 1 x 1 y 1 z 1 - неподвижная прямоугольная система координат. Скорость и ускорение точки M в этой системе координат будем называть абсолютной скоростью и абсолютным ускорением .

Пусть Oxyz - подвижная прямоугольная система координат, скажем, жестко связанная с неким твердым телом, движущимся относительно системы O 1 x 1 y 1 z 1 . Скорость и ускорение точки M в системе координат Oxyz будем называть относительной скоростью и относительным ускорением . Пусть - угловая скорость вращения системы Oxyz относительно O 1 x 1 y 1 z 1 .

Рассмотрим точку, совпадающую, в данный момент времени, с точкой M и неподвижной, относительно системы Oxyz (точка, жестко связанная с твердым телом). Скорость и ускорение такой точки в системе координат O 1 x 1 y 1 z 1 будем называть переносной скоростью и переносным ускорением .

Теорема о сложении скоростей

Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.

Теорема о сложении ускорений (теорема Кориолиса)

Абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова ускорений:
,
где
- кориолисово ускорение.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.