Векторное пространство определение. Примеры векторных пространств. Арифметическое n-мерное векторное пространство. Векторное линейное пространство

1. Понятие линейного пространства

Определение 1.1. Множество R элементов x, y, z, ... любой природы называется линейным (или векторным) пространством, если выполнены следующие три требования:

  1. Существует правило, посредством которого любым двум элементам x и y множества R ставится в соответствие третий элемент z этого множества, называемый суммой элементов x и y и обозначаемый z=x+y.
  2. Существует правило, посредством которого любому элементу x множества R и любому вещественному числу α ставится в соответствие элемент w этого множества, называемый произведением элемента x на число α и обозначаемый w=αx или w=xα.
  3. Представленные два правила подчинены следующим восьми аксиомам:
    1. x+y=y+x (переместительное свойство суммы);
    2. (x+y)+z=x+(y+z) (сочетательное свойство суммы);
    3. существует нулевой элемент 0 такой, что x +0=x для любого элемента x .
    4. для любого элемента x существует противоположный элемент элемент x" такой, что x+x" =0;
    5. x=x для любого x;
    6. λ(μx)=(λμ)x (сочетательное свойство относительно числового множителя);
    7. (λ+μ )x=λx+μx (распределительное свойство относительно числовых множителей);
    8. λ(x+y)=λx+λy (распределительное свойство относительно суммы элементов).
Элементы линейного (векторного) пространства называются векторами.

2. Базис линейного пространства

Определение 2.1. Совокупность линейно независимых элементов пространства R называется базисом этого пространства, если для каждого элемента x пространства R существуют вещественные чиcла такие, что выполнено равенство

Равенство (2.1) называется разложением элемента x по базису а числа называются координатами элемента x (относительно базиса ).

Докажем, что любой элемент x линейного пространства R

Пусть существует и другое разложение x :

Вычитая (2.1) из (2.2) имеем:

(2.3)

Так как базисные элементы линейно независимы из соотношения (2.3) следует, что

Следовательно каждый элемент линейного пространства R может быть разложен по базису единственным образом.

Теорема 2.2. При сложении произвольных двух элементов линейного пространства R их координаты (относительно любого базиса пространства R ) складываются, а при умножении любого элемента x на любое число α все координаты x умножаются на α .

Доказательство следует из аксиом 1-8 определения 1.1.

3. Размерность линейного пространства

Рассмотрим произвольное вещественное пространство R .

Определение 3.1. Линейное пространство R называется n-мерным, если в нем существует n линейно независимых элементов, а любые (n +1) элементов уже являются линейно зависимыми . При этом число n называется размерностью пространства R .

Размерность пространства обозначают символом dim.

Определение 3.2. Линейное пространство R называется бесконечномерным, если в нем существует любое число линейно независимых элементов.

Теорема 3.3. Пусть R является линейным пространствам размерности n (dim R=n ). Тогда любые n линейно независимых элементов этого пространства образуют его базис.

Доказательство. Так как R является n -мерным пространством, то из определения 2.1 следует, что в нем существует совокупность из n линейно независимых элементов . Пусть x - любой элемент из R . Тогда согласно определению 3.1 линейно зависимы, т.е. существуют числа (не все равные нулю) такие, что справедливо равенство

(3.3)

Из равенства (3.3) следует, что любой вектор из пространства R может быть разложен по элементам и, следовательно, они образуют базис пространства R . ■

Теорема 3.4. Пусть линейное пространство R имеет базис, состоящий из n элементов. Тогда размерность R равна n (dim R=n ).

Доказательство. Пусть множество n элементов является базисом пространства R . Достаточно доказать, что любые n +1 элементы этого пространства линейно зависимы. Разложив эти элементы по базису, получим:

где a 11 , a 12 ,..., a n+1,n вещественные числа.

Пусть элементы линейно независимы. Перепишем (3.4) в матричном виде:

Так как линейно независимы, матрица A имеет обратную матрицу A -1 . Решив матричное уравнение (3.5) относительно получим:

Как видно из уравнения (3.9) можно представить линейной комбинацией векторов . Следовательно векторы линейно зависимы. ■

4. Замена базиса и преобразование координат

Пусть в пространстве R наряду с исходным базисом имеется другой базис . Векторы этого базиса можно выразить через линейную комбинацию векторов исходного базиса следующим образом:

Матрица P называется матрицей замены базиса на .

В свою очередь, векторы исходного базиса выражаются через векторы нового следующим соотношением:

Из (4.6) следует, что QP=E , где E -единичная матрица , а матрицы Q и P взаимно обратные матрицы .

Рассмотрим как изменяются координаты векторов при замене базиса.

Пусть вектор x имеет координаты и координаты , тогда

(4.7)

Матрица P T называется матрицей преобразования координат . Она транспонирована с матрицей замены базиса. Обратная матрица (P T) -1 дает выражения новых координат через старые.

Матрица, обратная к транспонированной для некоторой матрицы, называется контраградиентной с ней.

5. Изоморфизм линейных пространств

Определение 5.1. Два произвольных вещественных линейных пространства R и R" называются изоморфными, если между элементами этих пространств можно установить взаимно однозначное соответствие так, что если x, y R отвечают x", y" R" соответственно, то элементу x+y R отвечает элемент x"+y" R" , а для любого вещественного α , элементу α x R отвечает элемент α x" R" .

Теорема 5.2. Если пространства R и R" изоморфны, то они имеют одинаковую размерность.

Доказательство. Пусть линейные пространства R и R" изоморфны, и пусть элементам пространства R отвечают элементы пространства R" соответственно. Допустим элементы линейно независимы. Покажем, что элементы также линейно независимы. Исходя из обратного предположения допустим, что элементы линейно зависимы. тогда один из них можно представить линейной комбинацией остальных элементов:. Но элементам отвечают элементы y в пространстве R, а сумме отвечает сумма . Но последнее означает линейную зависимость элементов . Следовательно линейно независимы. Из линейной зависимости элементов следует линейная зависимость элементов . Следовательно максимальное количество линейно независимых векторов для пространств R и R" одно и то же, т.е. эти пространства имеют одинаковую размерность. ■

Теорема 5.3. Любые два n -мерных вещественных линейных пространства R и R" изоморфны.

Доказательство. Выберем базисы и для пространств R и R" соответственно. Тогда каждый элемент пространства R можно представить линейной комбинацией базисных элементов: . Этому элементу в пространстве R" поставим в соответствие элемент теми же координатами:. В свою очередь элементу x" пространства R" соответствует элемент x пространства R . Отметим, что если элементам x и y пространства R отвечают элементы x" и y" пространства R" соответственно, то исходя из теоремы 2.2 элементу x+y пространства R отвечает элемент x"+y" пространства R" , а элементу α x отвечает элемент α x" . ■

Лекция 6. Векторное пространство.

Основные вопросы.

1. Векторное линейное пространство.

2. Базис и размерность пространства.

3. Ориентация пространства.

4. Разложение вектора по базису.

5. Координаты вектора.

1. Векторное линейное пространство.

Множество, состоящее из элементов какой угодно природы, в которых определены линейные операции: сложение двух элементов и умножение элемента на число называются пространствами , а их элементы – векторами этого пространства и обозначаются так же, как и векторные величины в гео-метрии: . Векторы таких абстрактных пространств, как правило, ничего общего не имеют с обычными геометрическими векторами. Элемен-тами абстрактных пространств могут быть функции, система чисел, матрицы и т. д., а в частном случае и обычные векторы. Поэтому такие пространства принято называть векторными пространствами .

Векторными пространствами являются, например , множество колли-неарных векторов, обозначаемое V 1 , множество компланарных векторов V 2 , множество векторов обычного (реального пространства) V 3 .

Для этого частного случая можно дать следующее определение век-торного пространства.

Определение 1. Множество векторов называется векторным прост-ранством , если линейная комбинация любых векто-ров множества также является вектором этого мно-жества. Сами векторы называются элементами век-торного пространства.

Более важным как в теоретическом, так и в прикладном отношении яв-ляется общее (абстрактное) понятие векторного пространства.


Определение 2. Множество R элементов , в котором для лю-бых двух элементов и определена сум-ма и для любого элемента https://pandia.ru/text/80/142/images/image006_75.gif" width="68" height="20"> называется векторным (или линейным) про-странством , а его элементы – векторами, если опера-ции сложения векторов и умножение вектора на число удовлетворяют следующим условиям (аксиомам ) :

1) сложение коммутативно, т. е..gif" width="184" height="25">;

3) существует такой элемент (нулевой вектор), что для любого https://pandia.ru/text/80/142/images/image003_99.gif" width="45" height="20">.gif" width="99" height="27">;

5) для любых векторов и и любого чис-ла λ имеет место равенство ;

6) для любых векторов и любых чисел λ и µ справедливо равенство https://pandia.ru/text/80/142/images/image003_99.gif" width="45 height=20" height="20"> и любых чисел λ и µ справедли-во ;

8) https://pandia.ru/text/80/142/images/image003_99.gif" width="45" height="20"> .

Из аксиом, определяющих векторное пространство, вытекают прос-тейшие следствия :

1. В векторном пространстве существует только один нуль – элемент – нулевой вектор.

2. В векторном пространстве каждый вектор имеет единственный проти-воположный вектор.

3. Для каждого элемента выполняется равенство .

4. Для любого действительного числа λ и нулевого вектора https://pandia.ru/text/80/142/images/image017_45.gif" width="68" height="25">.

5..gif" width="145" height="28">

6..gif" width="15" height="19 src=">.gif" width="71" height="24 src="> называется вектор , удовлетворяющий равенству https://pandia.ru/text/80/142/images/image026_26.gif" width="73" height="24">.

Итак, действительно, и множество всех геометрических векторов являет-ся линейным (векторным) пространством, так как для элементов этого мно-жества определены действия сложения и умножения на число, удовлетворя-ющие сформулированным аксиомам.

2. Базис и размерность пространства.

Существенными понятиями векторного пространства являются понятия базиса и размерность.

Определение. Совокупность линейно независимых векторов, взятых в определенном порядке, через которые линейно выражается любой вектор пространства, называется базисом этого пространства. Векторы. Составляющие базис пространства, называется базисным .

Базисом множества векторов, расположенных на произвольной прямой, можно считать один коллинеарный этой прямой вектор .

Базисом на плоскости назовем два неколлинеарных вектора на этой пло-скости, взятые в определенном порядке https://pandia.ru/text/80/142/images/image029_29.gif" width="61" height="24"> .

Если базисные векторы попарно перпендикулярны (ортогональны), то базис называется ортогональным , а если эти векторы имеют длину, равную единице, то базис называется ортонормированным .

Наибольшее число линейно независимых векторов пространства называ-ется размерностью этого пространства, т. е. размерность пространства сов-падает с числом базисных векторов этого пространства.

Итак, в соответствии с данными определениями:

1. Одномерным пространством V 1 является прямая линия, а базис состо-ит из одного коллинеарного вектора https://pandia.ru/text/80/142/images/image028_22.gif" width="39" height="23 src="> .

3. Обычное пространство является трехмерным пространством V 3 , базис которого состоит из трех некомпланарных векторов .

Отсюда мы видим, что число базисных векторов на прямой, на плос-кости, в реальном пространстве совпадает с тем, что в геометрии принято на-зывать числом измерений (размерностью) прямой, плоскости, пространства. Поэтому естественно ввести более общее определение.


Определение. Векторное пространство R называется n – мерным, если в нем существует не более n линейно неза-висимых векторов и обозначается R n . Число n на-зывается размерностью пространства.

В соответствии с размерностью пространства делятся на конечномерные и бесконечномерные . Размерность нулевого пространства по определению считается равной нулю.

Замечание 1. В каждом пространстве можно указать сколько угодно базисов, но при этом все базисы данного пространства состоят из одного и того же числа векторов.

Замечание 2. В n – мерном векторном пространстве базисом назы-вают любую упорядоченную совокупность n линейно независимых векторов.

3. Ориентация пространства.

Пусть базисные векторы в пространстве V 3 имеют общее начало и упорядочены , т. е. указано какой вектор считается первым, какой – вторым и какой – третьим. Например, в базисе век-торы упорядочены согласно индек-сации.

Для того чтобы ориентировать пространство, необходимо задать какой-нибудь базис и объявить его положительным .

Можно показать, что множество всех базисов пространства распадается на два класса, т. е. на два непересекающихся подмножества.

а) все базисы, принадлежащие одному подмножеству (классу), имеют одинаковую ориентацию (одноименные базисы) ;

б) всякие два базиса, принадлежащие различным подмножествам (кла-ссами), имеют противоположную ориентацию, (разноименные базисы) .

Если один из двух классов базисов пространства объявлен положитель-ным, а другой – отрицательным, то говорят, что это пространство ориенти-ровано .

Часто при ориентации пространства одни базисы называют правыми , а другие – левыми .

https://pandia.ru/text/80/142/images/image029_29.gif" width="61" height="24 src="> называют правым , если при наблюдении с конца третьего вектора кратчайший поворот пер-вого вектора https://pandia.ru/text/80/142/images/image033_23.gif" width="16" height="23"> осуществляется против часовой стрелки (рис. 1.8, а).

https://pandia.ru/text/80/142/images/image036_22.gif" width="16" height="24">

https://pandia.ru/text/80/142/images/image037_23.gif" width="15" height="23">

https://pandia.ru/text/80/142/images/image039_23.gif" width="13" height="19">

https://pandia.ru/text/80/142/images/image033_23.gif" width="16" height="23">

Рис. 1.8. Правый базис (а) и левый базис (б)

Обычно положительным базисом объявляется правый базис пространства

Правый (левый) базис пространства может быть определен и с помощью правила «правого» («левого») винта или буравчика.

По аналогии с этим вводится понятие правой и левой тройки некомпла-нарных векторов , которые должны быть упорядочены (рис.1.8).

Таким образом, в общем случае две упорядоченные тройки некомпла-нарных векторов имеют одинаковую ориентацию (одноименны) в пространстве V 3 если они обе правые или обе левые, и – противоположную ориентацию (разноименны), если одна из них правая, а другая левая.

Аналогично поступают и в случае пространства V 2 (плоскости).

4. Разложение вектора по базису.

Этот вопрос для простоты рассуждений рассмотрим на примере трех-мерного векторного пространства R 3 .

Пусть https://pandia.ru/text/80/142/images/image021_36.gif" width="15" height="19"> - произвольный вектор этого пространства.

Пусть Р – поле. Элементы a, b, ... ÎР будем называть скалярами .

Определение 1. Класс V объектов (элементов) , , , ... произвольной природы называется векторным пространством над полем Р , а элементы класса V называются векторами , если V замкнуто относительно операции «+» и операции умножения на скаляры из Р (т.е. для любых , ÎV +ÎV ;"aÎ Р aÎV), и выполняются следующие условия:

А 1: алгебра - абелева группа;

А 2: для любых a, bÎР, для любого ÎV выполняется a(b)=(ab)- обобщенный ассоциативный закон;

А 3: для любых a, bÎР, для любого ÎV выполняется (a+b)= a+ b;

А 4: для любого a из Р, для любых , из V выполняется a(+)=a+a(обобщённые дистрибутивные законы);

А 5: для любого из V выполняется 1 = , где 1 – единица поля Р - свойство унитарности.

Элементы поля Р будем называть скалярами, а элементы множества V - векторами.

Замечание. Умножение вектора на скаляр не является бинарной операцией на множестве V, так как это отображение P´V®V.

Рассмотрим примеры векторных пространств.

Пример 1. Нулевое (нуль-мерное) векторное пространство - пространство V 0 ={} - состоящее из одного нуль-вектора.

И для любого aÎР a=. Проверим выполнимость аксиом векторного пространства.

Заметим, что нулевое векторное пространство существенно зависит от поля Р. Так, нульмерные пространства над полем рациональных чисел и над полем действительных чисел считаются различными, хоть и состоят из единственного нуль-вектора.

Пример 2. Поле Р само является векторным пространством над полем Р. Пусть V=P. Проверим выполнимость аксиом векторного пространства. Так как Р - поле, то Р является аддитивной абелевой группой и А 1 выполняется. В силу выполнимости в Р ассоциативности умножения выполняется А 2 . Аксиомы А 3 и А 4 выполняются в силу выполнимости в Р дистрибутивности умножения относительно сложения. Так как в поле Р существует единичный элемент 1, то выполняется свойство унитарности А 5 . Таким образом, поле Р является векторным пространством над полем Р.

Пример 3. Арифметическое n-мерное векторное пространство.

Пусть Р - поле. Рассмотрим множество V= P n ={(a 1 , a 2 , … , a n) ½ a i Î P, i=1,…, n}. Введём на множестве V операции сложения векторов и умножения вектора на скаляр по следующим правилам:

"= (a 1 , a 2 , … , a n), = (b 1 , b 2 , … , b n) Î V, "aÎ P += (a 1 + b 1 , a 2 + b 2 , … , a n + b n) (1)

a=(aa 1 , aa 2 , … , aa n) (2)

Элементы множества V будем называть n-мерными векторами . Два n-мерных вектора называются равными, если их соответствующие компоненты (координаты) равны. Покажем, что V является векторным пространством над полем Р. Из определения операций сложения векторов и умножения вектора на скаляр следует, что V замкнуто относительно этих операций. Так как сложение элементов из V сводится к сложению элементов поля Р, а Р является аддитивной абелевой группой, то и V является аддитивной абелевой группой. Причём, = , где 0 - ноль поля Р, -= (-a 1 , -a 2 , … , -a n). Таким образом, А 1 выполняется. Так как умножение элемента из V на элемент из Р сводится к умножению элементов поля Р, то:


А 2 выполняется в силу ассоциативности умножения на Р;

А 3 и А 4 выполняются в силу дистрибутивности умножения относительно сложения на Р;

А 5 выполняется, так как 1 Î Р - нейтральный элемент относительно умножения на Р.

Определение 2. Множество V= P n с операциями, определёнными формулами (1) и (2) называется арифметическим n-мерным векторным пространством над полем Р.

В статье о n -мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n -мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Определение 1

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Определение 2

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n -векторов. Размерность его соответственно равна n . Возьмем систему из n -единичных векторов:

e (1) = (1 , 0 , . . . , 0) e (2) = (0 , 1 , . . . , 0) e (n) = (0 , 0 , . . . , 1)

Используем эти векторы в качестве составляющих матрицы A: она будет являться единичной с размерностью n на n . Ранг этой матрицы равен n . Следовательно, векторная система e (1) , e (2) , . . . , e (n) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы e (1) , e (2) , . . . , e (n) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n -мерных векторов, в которой число векторов меньше n , не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e (2) , e (1) , . . . , e (n) . Она также будет являться базисом n -мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n . Система e (2) , e (1) , . . . , e (n) линейно независима и является базисом n -мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n -мерного векторного пространства.

Определение 3

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n -мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Пример 1

Исходные данные: векторы

a = (3 , - 2 , 1) b = (2 , 1 , 2) c = (3 , - 1 , - 2)

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A = 3 2 3 - 2 1 - 1 1 2 - 2 A = 3 - 2 1 2 1 2 3 - 1 - 2 = 3 · 1 · (- 2) + (- 2) · 2 · 3 + 1 · 2 · (- 1) - 1 · 1 · 3 - (- 2) · 2 · (- 2) - 3 · 2 · (- 1) = = - 25 ≠ 0 ⇒ R a n k (A) = 3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Пример 2

Исходные данные: векторы

a = (3 , - 2 , 1) b = (2 , 1 , 2) c = (3 , - 1 , - 2) d = (0 , 1 , 2)

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a = (3 , - 2 , 1) , b = (2 , 1 , 2) , c = (3 , - 1 , - 2) является базисом.

Ответ: указанная система векторов не является базисом.

Пример 3

Исходные данные: векторы

a = (1 , 2 , 3 , 3) b = (2 , 5 , 6 , 8) c = (1 , 3 , 2 , 4) d = (2 , 5 , 4 , 7)

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

По методу Гаусса определим ранг матрицы:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7 ~ 1 2 3 3 0 1 0 2 0 1 - 1 1 0 1 - 2 1 ~ ~ 1 2 3 3 0 1 0 2 0 0 - 1 - 1 0 0 - 2 - 1 ~ 1 2 3 3 0 1 0 2 0 0 - 1 - 1 0 0 0 1 ⇒ ⇒ R a n k (A) = 4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Пример 4

Исходные данные: векторы

a (1) = (1 , 2 , - 1 , - 2) a (2) = (0 , 2 , 1 , - 3) a (3) = (1 , 0 , 0 , 5)

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Разложение вектора по базису

Примем, что произвольные векторы e (1) , e (2) , . . . , e (n) являются базисом векторного n-мерного пространства. Добавим к ним некий n -мерный вектор x → : полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Определение 4

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Доказательство 1

Докажем эту теорему:

зададим базис n -мерного векторного пространства - e (1) , e (2) , . . . , e (n) . Сделаем систему линейно зависимой, добавив к ней n -мерный вектор x → . Этот вектор может быть линейно выражен через исходные векторы e:

x = x 1 · e (1) + x 2 · e (2) + . . . + x n · e (n) , где x 1 , x 2 , . . . , x n - некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

x = x ~ 1 e (1) + x 2 ~ e (2) + . . . + x ~ n e (n) , где x ~ 1 , x ~ 2 , . . . , x ~ n - некие числа.

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x = x 1 · e (1) + x 2 · e (2) + . . . + x n · e (n) . Получим:

0 = (x ~ 1 - x 1) · e (1) + (x ~ 2 - x 2) · e (2) + . . . (x ~ n - x n) · e (2)

Система базисных векторов e (1) , e (2) , . . . , e (n) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты (x ~ 1 - x 1) , (x ~ 2 - x 2) , . . . , (x ~ n - x n) будут равны нулю. Из чего справедливым будет: x 1 = x ~ 1 , x 2 = x ~ 2 , . . . , x n = x ~ n . И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x 1 , x 2 , . . . , x n называются координатами вектора x → в базисе e (1) , e (2) , . . . , e (n) .

Доказанная теория делает понятным выражение «задан n -мерный вектор x = (x 1 , x 2 , . . . , x n) »: рассматривается вектор x → n -мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n -мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n -мерного векторного пространства задана система из n линейно независимых векторов

а также задан вектор x = (x 1 , x 2 , . . . , x n) .

Векторы e 1 (1) , e 2 (2) , . . . , e n (n) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x → в базисе e 1 (1) , e 2 (2) , . . . , e n (n) , обозначаемые как x ~ 1 , x ~ 2 , . . . , x ~ n .

Вектор x → будет представлен следующим образом:

x = x ~ 1 · e (1) + x ~ 2 · e (2) + . . . + x ~ n · e (n)

Запишем это выражение в координатной форме:

(x 1 , x 2 , . . . , x n) = x ~ 1 · (e (1) 1 , e (1) 2 , . . . , e (1) n) + x ~ 2 · (e (2) 1 , e (2) 2 , . . . , e (2) n) + . . . + + x ~ n · (e (n) 1 , e (n) 2 , . . . , e (n) n) = = (x ~ 1 e 1 (1) + x ~ 2 e 1 (2) + . . . + x ~ n e 1 (n) , x ~ 1 e 2 (1) + x ~ 2 e 2 (2) + + . . . + x ~ n e 2 (n) , . . . , x ~ 1 e n (1) + x ~ 2 e n (2) + . . . + x ~ n e n (n))

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x ~ 1 , x ~ 2 , . . . , x ~ n:

x 1 = x ~ 1 e 1 1 + x ~ 2 e 1 2 + . . . + x ~ n e 1 n x 2 = x ~ 1 e 2 1 + x ~ 2 e 2 2 + . . . + x ~ n e 2 n ⋮ x n = x ~ 1 e n 1 + x ~ 2 e n 2 + . . . + x ~ n e n n

Матрица этой системы будет иметь следующий вид:

e 1 (1) e 1 (2) ⋯ e 1 (n) e 2 (1) e 2 (2) ⋯ e 2 (n) ⋮ ⋮ ⋮ ⋮ e n (1) e n (2) ⋯ e n (n)

Пусть это будет матрица A , и ее столбцы – векторы линейно независимой системы векторов e 1 (1) , e 2 (2) , . . . , e n (n) . Ранг матрицы – n , и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x ~ 1 , x ~ 2 , . . . , x ~ n вектора x → в базисе e 1 (1) , e 2 (2) , . . . , e n (n) .

Применим рассмотренную теорию на конкретном примере.

Пример 6

Исходные данные: в базисе трехмерного пространства заданы векторы

e (1) = (1 , - 1 , 1) e (2) = (3 , 2 , - 5) e (3) = (2 , 1 , - 3) x = (6 , 2 , - 7)

Необходимо подтвердить факт, что система векторов e (1) , e (2) , e (3) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e (1) , e (2) , e (3) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A , строки которой – заданные векторы e (1) , e (2) , e (3) .

Используем метод Гаусса:

A = 1 - 1 1 3 2 - 5 2 1 - 3 ~ 1 - 1 1 0 5 - 8 0 3 - 5 ~ 1 - 1 1 0 5 - 8 0 0 - 1 5

R a n k (A) = 3 . Таким образом, система векторов e (1) , e (2) , e (3) линейно независима и является базисом.

Пусть в базисе вектор x → имеет координаты x ~ 1 , x ~ 2 , x ~ 3 . Связь этих координат определяется уравнением:

x 1 = x ~ 1 e 1 (1) + x ~ 2 e 1 (2) + x ~ 3 e 1 (3) x 2 = x ~ 1 e 2 (1) + x ~ 2 e 2 (2) + x ~ 3 e 2 (3) x 3 = x ~ 1 e 3 (1) + x ~ 2 e 3 (2) + x ~ 3 e 3 (3)

Применим значения согласно условиям задачи:

x ~ 1 + 3 x ~ 2 + 2 x ~ 3 = 6 - x ~ 1 + 2 x ~ 2 + x ~ 3 = 2 x ~ 1 - 5 x ~ 2 - 3 x 3 = - 7

Решим систему уравнений методом Крамера:

∆ = 1 3 2 - 1 2 1 1 - 5 - 3 = - 1 ∆ x ~ 1 = 6 3 2 2 2 1 - 7 - 5 - 3 = - 1 , x ~ 1 = ∆ x ~ 1 ∆ = - 1 - 1 = 1 ∆ x ~ 2 = 1 6 2 - 1 2 1 1 - 7 - 3 = - 1 , x ~ 2 = ∆ x ~ 2 ∆ = - 1 - 1 = 1 ∆ x ~ 3 = 1 3 6 - 1 2 2 1 - 5 - 7 = - 1 , x ~ 3 = ∆ x ~ 3 ∆ = - 1 - 1 = 1

Так, вектор x → в базисе e (1) , e (2) , e (3) имеет координаты x ~ 1 = 1 , x ~ 2 = 1 , x ~ 3 = 1 .

Ответ: x = (1 , 1 , 1)

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c (1) = (c 1 (1) , c 2 (1) , . . . , c n (1)) c (2) = (c 1 (2) , c 2 (2) , . . . , c n (2)) ⋮ c (n) = (c 1 (n) , e 2 (n) , . . . , c n (n))

e (1) = (e 1 (1) , e 2 (1) , . . . , e n (1)) e (2) = (e 1 (2) , e 2 (2) , . . . , e n (2)) ⋮ e (n) = (e 1 (n) , e 2 (n) , . . . , e n (n))

Указанные системы являются также базисами заданного пространства.

Пусть c ~ 1 (1) , c ~ 2 (1) , . . . , c ~ n (1) - координаты вектора c (1) в базисе e (1) , e (2) , . . . , e (3) , тогда связь координат будет задаваться системой линейных уравнений:

с 1 (1) = c ~ 1 (1) e 1 (1) + c ~ 2 (1) e 1 (2) + . . . + c ~ n (1) e 1 (n) с 2 (1) = c ~ 1 (1) e 2 (1) + c ~ 2 (1) e 2 (2) + . . . + c ~ n (1) e 2 (n) ⋮ с n (1) = c ~ 1 (1) e n (1) + c ~ 2 (1) e n (2) + . . . + c ~ n (1) e n (n)

В виде матрицы систему можно отобразить так:

(c 1 (1) , c 2 (1) , . . . , c n (1)) = (c ~ 1 (1) , c ~ 2 (1) , . . . , c ~ n (1)) · e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

Сделаем по аналогии такую же запись для вектора c (2) :

(c 1 (2) , c 2 (2) , . . . , c n (2)) = (c ~ 1 (2) , c ~ 2 (2) , . . . , c ~ n (2)) · e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

(c 1 (n) , c 2 (n) , . . . , c n (n)) = (c ~ 1 (n) , c ~ 2 (n) , . . . , c ~ n (n)) · e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

Матричные равенства объединим в одно выражение:

c 1 (1) c 2 (1) ⋯ c n (1) c 1 (2) c 2 (2) ⋯ c n (2) ⋮ ⋮ ⋮ ⋮ c 1 (n) c 2 (n) ⋯ c n (n) = c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) · e 1 (1) e 2 (1) ⋯ e n (1) e 1 (2) e 2 (2) ⋯ e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) ⋯ e n (n)

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e (1) , e (2) , . . . , e (3) через базис c (1) , c (2) , . . . , c (n) :

e 1 (1) e 2 (1) ⋯ e n (1) e 1 (2) e 2 (2) ⋯ e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) ⋯ e n (n) = e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) · c 1 (1) c 2 (1) ⋯ c n (1) c 1 (2) c 2 (2) ⋯ c n (2) ⋮ ⋮ ⋮ ⋮ c 1 (n) c 2 (n) ⋯ c n (n)

Дадим следующие определения:

Определение 5

Матрица c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) является матрицей перехода от базиса e (1) , e (2) , . . . , e (3)

к базису c (1) , c (2) , . . . , c (n) .

Определение 6

Матрица e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) является матрицей перехода от базиса c (1) , c (2) , . . . , c (n)

к базису e (1) , e (2) , . . . , e (3) .

Из этих равенств очевидно, что

c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) · e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) = 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) · c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) = 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1

т.е. матрицы перехода взаимообратны.

Рассмотрим теорию на конкретном примере.

Пример 7

Исходные данные: необходимо найти матрицу перехода от базиса

c (1) = (1 , 2 , 1) c (2) = (2 , 3 , 3) c (3) = (3 , 7 , 1)

e (1) = (3 , 1 , 4) e (2) = (5 , 2 , 1) e (3) = (1 , 1 , - 6)

Также нужно указать связь координат произвольного вектора x → в заданных базисах.

Решение

1. Пусть T – матрица перехода, тогда верным будет равенство:

3 1 4 5 2 1 1 1 1 = T · 1 2 1 2 3 3 3 7 1

Умножим обе части равенства на

1 2 1 2 3 3 3 7 1 - 1

и получим:

T = 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1

2. Определим матрицу перехода:

T = 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1 = = 3 1 4 5 2 1 1 1 - 6 · - 18 5 3 7 - 2 - 1 5 - 1 - 1 = - 27 9 4 - 71 20 12 - 41 9 8

3. Определим связь координат вектора x → :

допустим, что в базисе c (1) , c (2) , . . . , c (n) вектор x → имеет координаты x 1 , x 2 , x 3 , тогда:

x = (x 1 , x 2 , x 3) · 1 2 1 2 3 3 3 7 1 ,

а в базисе e (1) , e (2) , . . . , e (3) имеет координаты x ~ 1 , x ~ 2 , x ~ 3 , тогда:

x = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6

Т.к. равны левые части этих равенств, мы можем приравнять и правые:

(x 1 , x 2 , x 3) · 1 2 1 2 3 3 3 7 1 = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6

Умножим обе части справа на

1 2 1 2 3 3 3 7 1 - 1

и получим:

(x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1 ⇔ ⇔ (x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · T ⇔ ⇔ (x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · - 27 9 4 - 71 20 12 - 41 9 8

С другой стороны

(x ~ 1 , x ~ 2 , x ~ 3) = (x 1 , x 2 , x 3) · - 27 9 4 - 71 20 12 - 41 9 8

Последние равенства показывают связь координат вектора x → в обоих базисах.

Ответ: матрица перехода

27 9 4 - 71 20 12 - 41 9 8

Координаты вектора x → в заданных базисах связаны соотношением:

(x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · - 27 9 4 - 71 20 12 - 41 9 8

(x ~ 1 , x ~ 2 , x ~ 3) = (x 1 , x 2 , x 3) · - 27 9 4 - 71 20 12 - 41 9 8 - 1

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пусть V - непустое множество, элементы которого мы назовём векторами и будем обозначать …и т.д. Пусть на Vзаданы и определеным каким-либо образом две операции. Первая операция - бинарная аддитивная операция (или грубо говоря - операция сложения). Эту операцию обозначим знаком +, (впрочем, необязательно, чтобы на все 100% эта операция определялась так, как определяется операция сложения для обычных чисел, мы ведь не числа сейчас изучаем, а векторы, поэтому эту операцию сложения векторов можно обозначить и каким-то своим, особым знаком, например так: (). Вторая операция - умножение вектора на какой-нибудь элемент? такого множества, которое является полем, в результате которой получается новый вектор (). Элементы поля называют ещё скалярами. (Кому лень смотреть, что такое поле, скажу что примерами алгебраических полей могут служить множество действительных или также комплексных чисел). (4)

Итак, сформулируем аксиомы векторного пространства. (3)

1. a) сумма любых двух элементов из V и б) произведение скаляра и произвольного элемента из V являются некоторыми элементами из V (векторами).

2. сложение любых трёх элементов из V подчиняется сочетательному закону (или как ещё говорят - векторное сложение ассоциативно):

3. сложение любых двух элементов из V подчиняется переместительному закону (векторное сложение коммутативно): .

4. существует такой элемент из V (нулевой вектор), что для любого.

5. для любого элемента из V существует такой элемент из V, сумма которого с исходным элементом равна, т.е. (.

Для любых скаляров (чисел) ? и? и для любых двух векторов из V

Векторное подпространство

Векторным подпространством, или просто подпространством, векторное пространство Е нал полем К называется множество, замкнутое относительно действий сложения и умножения на скаляр. Подпространство, рассматриваемое отдельно от вмещающего его пространства, есть векторное пространство над тем же полем. (5)

Прямой линией, проходящей через две точки x и y векторного пространства Е, называется множество элементов вида, ??. Множество G называется плоским множеством, если вместе с любыми двумя оно содержит прямую, проходящую через эти точки. Каждое плоское множество получается из некоторого подпространства с помощью сдвига (параллельного переноса): G=x+F, это означает, что каждый элемент z представим единственным образом в виде y , причем при этом равенство осуществляет взаимно однозначное соответствие между F и G.

Совокупность всех сдвигов данного подпространства F образует векторное пространство над K, называется факторпространством E/F, если определитель операции следующим образом:

Пусть М = - произвольное множество векторов Е; линейной комбинацией векторов называется вектор x, определенный формулой

в которой лишь конечное число коэффициентов отлично от нуля. Совокупность всех линейных комбинаций векторов данного множества М является наименьшим подпространством, содержащим М, и называющийся линейной оболочкой множества М. Линейная комбинация называется тривиальной, если все коэффициенты равны нулю. Множество М называется линейно зависимым множеством, если все нетривиальные линейные комбинации векторов из М отличны от нуля.

В теории действительных и комплексных векторных пространств важную роль играет теория выпуклых множеств. Множество М в действительном векторном пространстве называется выпуклым множеством, если вместе с любыми двумя его точками x, y отрезок также принадлежит М.

Большое место в теории векторных пространств занимает теория линейных функционалов на векторное пространство и связанная с этим теория двойственности. Пусть Е есть векторное пространство над полем К. Линейным функционалом на Е называется аддитивное и однородное отображение усть Е есть векторное пространство над полем К. Линейным функционалом на Е называется аддитивное и однородное отображение

Множество всех линейных функционалов на Е образует векторное пространство над полем К относительно операций

Это векторное пространство называется сопряженным (или двойственным) пространством (к Е). С понятием сопряженного пространства связан ряд геометрических терминов. Пусть D?E (соответственно множество Г) называется множество

(соответственно); здесь и - подпространства соответственно пространств и Е. Если f - ненулевой элемент, то {f } есть максимальное собственное линейное подпространство в Е, называется иногда гиперподпространством; сдвиг такого подпространства называется гиперплоскостью в Е; всякая гиперплоскость имеет вид

{x: f(x)= ??}, где f ? 0, f , К.

Подмножество называется тотальным подмножеством над Е, если его аннулятор содержит лишь нулевой элемент ={0}.

Каждому линейно независимому множеству можно сопоставить сопряженное подмножество, т.е. такое множество, что (Кронекера символ) для всех. Множество пар называется при этом биорторгональной системой. Если множество есть базис в Е, то тотально над Е.

Значительное место в теории векторных пространств занимает теория линейных преобразований векторного пространства. Пусть - два векторных пространства над одним и тем же полем К. Линейным отображением, или линейным оператором, Т, отображающим векторное пространство в векторном пространстве (или линейным оператором из в.

Два векторных пространства и называются изоморфными векторными пространствами, если существует линейный оператор («изоморфизм»), осуществляющий взаимно однозначное соответствие между их элементами и.

С теорией линейных отображений векторного пространства тесно связана теория билинейных отображений и полилинейных отображений векторного пространства.

Важную группу задач теории векторного пространства образуют задачи продолжения линейных отображений. Пусть F - подпространство векторного пространства - линейное пространство над тем же полем, что и, и пусть - линейное отображение F в; требуется найти продолжение Т отображения, определенное на всем и являющееся линейным отображением в. Такое продолжение всегда существует, но дополнительные ограничения на функции (связанные с дополнительными структурами в векторное пространство, например, топологией или отношением порядка) могут сделать задачу неразрешимой. Примерами решения задачи продолжения являются Хана-Банаха теорема и теоремы о продолжении положительных функционалов в пространствах с конусом.

Важным разделом теории Векторных пространств является теория операция над векторными пространствами, т.е. способов построения новых векторных пространств по известным. Примеры таких операций - известные операции взятия подпространства и образования факторпространства по подпространству. Другие важные операции - построение прямой суммы, прямого произведения и тензорного произведения векторного пространства.