Заряд и масса протона. Масса протона

Водорода, элемента, который имеет наиболее простое строение. Оно имеет положительный заряд и практически неограниченное время жизни. Это самая стабильная частица во Вселенной. Протоны, образовавшиеся в результате Большого Взрыва, до сих пор не распались. Масса протона составляет 1,627*10-27 кг или 938,272 эВ. Чаще эту величину выражают в электронвольтах.

Протон был открыт «отцом» ядерной физики Эрнестом Резерфордом. Он выдвинул гипотезу о том, что ядра атомов всех химических элементов состоят из протонов, так как по массе они превышают ядро атома водорода в целое число раз. Резерфорд поставил интересный опыт. В те времена уже была открыта естественная радиоактивность некоторых элементов. С помощью альфа-излучения (альфа-частицы представляют собой ядра гелия с высокими энергиями) ученый облучал атомы азота. В результате такого взаимодействия вылетала частица. Резерфорд предположил, что это протон. Дальнейшие опыты в пузырьковой камере Вильсона подтвердили его предположение. Так в 1913 году была открыта новая частица, но гипотеза Резерфорда о составе ядра оказалась несостоятельной.

Открытие нейтрона

Великий ученый нашел ошибку в своих расчетах и выдвинул гипотезу о существовании еще одной частицы, входящей в состав ядра и обладающей практически той же массой, что и протон. Экспериментально он не смог ее обнаружить.

Это сделал в 1932 году сделал английский ученый Джеймс Чедвик. Он поставил опыт, в ходе которого бомбардировал атомы бериллия высокоэнергетическими альфа-частицами. В результате ядерной реакции из ядра бериллия вылетала частица, впоследствии названная нейтроном. За свое открытие Чедвик уже через три года получил Нобелевскую премию.

Масса нейтрона действительно мало отличается от массы протона (1,622*10-27 кг), но эта частица не обладает зарядом. В этом смысле она нейтральна и в то же время способна вызывать деление тяжелых ядер. Из-за отсутствия заряда нейтрон может легко пройти через высокий кулоновский потенциальный барьер и внедриться в структуру ядра.

Протон и нейтрон обладают квантовыми свойствами (могут проявлять свойства частиц и волн). Нейтронное излучение используют в медицинских целях. Высокая проникающая способность позволяет этому излучению ионизировать глубинные опухоли и другие злокачественные образования и обнаруживать их. При этом энергия частиц относительно маленькая.

Нейтрон, в отличие от протона, нестабильная частица. Ее время жизни составляет около 900 секунд. Она распадается на протон, электрон и электронное нейтрино.

В этой статье вы найдете информацию о протоне, как элементарной частице, стоящей в основе мироздания наряду с другими её элементами, используемой в химии и физике. Будут определены свойства протона, его характеристика в химии и стабильность.

Что такое протон

Протон - это один из представителей элементарных частичек, который относят к барионам, э.ч. в которых фермионы сильно взаимодействуют, а сама частица состоит из 3-х кварков. Протон является стабильной частицей и имеет личный импульсный момент - спин ½. Физическое обозначение протона - p (или p +)

Протон - элементарная частица, принимающая участие в процессах термоядерного типа. Именно этот вид реакций по существу - главный источник энергии, генерируемый звездами во всей вселенной. Практически весь объем энергии, выделяемый Солнцем, существует только за счет объединения 4-х протонов в одно гелиевое ядро с образованием одного нейтрона из двух протонов.

Свойства присущие протону

Протон - это один из представителей барионов. Это факт. Заряд и масса протона - постоянные величины. Электрически протон заряжен +1, а его масса определена в различных единицах измерения и составляет в МэВ 938,272 0813(58), в килограммах протона вес заключен в цифрах 1,672 621 898(21)·10 −27 кг, в единицах атомных масс вес протона равен 1,007 276 466 879(91) а. е. м., а в соотношении с массой электрона, протон весит 1836,152 673 89(17) в соотношении с электроном.

Протон, определение которого уже давалось выше, с точки зрения физики, - это элементарная частичка, имеющая проекцию изоспина +½, а ядерная физика воспринимает эту частицу с противоположным знаком. Сам протон является нуклоном, а состоит из 3-х кварков (двух кварков u и одного кварка d).

Экспериментально исследовал структуру протона ядерщик-физик из Соединенных Штатов Америки - Роберт Хофштадтер. Для достижения этой цели физик сталкивал протоны с электронами высоких энергий, а за описание был удостоен Нобелевской премии в области физики.

В состав протона входит керн (тяжелая сердцевина), который заключает в себе около тридцати пяти процентов энергии электрического заряда протона и имеет довольно большую плотность. Оболочка, окружающая керн, относительно разряжена. Состоит оболочка в основном из виртуальных мезонов типа и p и несет в себе около пятидесяти процентов электрического потенциала протона и находится на расстоянии, равном приблизительно от 0.25*10 13 до 1,4*10 13 . Еще дальше, на расстоянии около 2,5*10 13 сантиметров оболочка состоит из и w виртуальных мезонов и содержит в себе приблизительно оставшиеся пятнадцать процентов электрического заряда протона.

Устойчивость и стабильность протона

В свободном состоянии протон не проявляет никаких признаков распада, что свидетельствует о его стабильности. Стабильное состояние протона, как легчайшего представителя барионов, обусловлено законом сохранения числа барионов. Не нарушая закон СБЧ, протоны способны распадаться на нейтрино, позитрон и другие, более легкие элементарные частицы.

Протон ядра атомов имеет возможность захватывать некоторые виды электронов, имеющие K, L, M атомные оболочки. Протон, совершив электронный захват, переходит в нейтрон и в результате выделяет нейтрино, а образовавшаяся в результате электронного захвата «дыра» заполняется за счет электронов свыше лежащих атомных слоев.

В системах неинерциального отсчета протоны должны приобретать ограниченное время жизни, которое возможно рассчитать, это обусловлено эффектом (излучение) Унру, который в квантовой теории поля предсказывает возможное созерцание теплового излучения в системе отсчета, которая ускоряется при условии отсутствия данного вида излучения. Таким образом, протон при наличии конечного времени своего существования может подвергаться бета-распаду в позитрон, нейтрон или нейтрино, несмотря на то, что сам процесс такого распада запрещен ЗСЭ.

Использование протонов в химии

Протон - это H атом, построенный из единого протона и не имеющий электрона, так что в химическом понимании, протон - это одно ядро атома H. Нейтрон на пару с протоном создают ядро атома. В ПТХЭ Дмитрия Ивановича Менделеева номер элемента указывает число протонов в атоме конкретного элемента, а определяется номер элемента атомным зарядом.

Катионы водорода представляют собой очень сильные электронные акцепторы. В химии протоны получают в основном из кислот органической и минеральной природы. Ионизация является способом получения протонов в газовых фазах.

, электромагнитное и гравитационное

Протоны принимают участие в термоядерных реакциях , которые являются основным источником энергии, генерируемой звёздами . В частности, реакции pp -цикла , который является источником почти всей энергии, излучаемой Солнцем , сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.

В физике протон обозначается p (или p + ). Химическое обозначение протона (рассматриваемого в качестве положительного иона водорода) - H + , астрофизическое - HII.

Открытие

Свойства протона

Отношение масс протона и электрона, равное 1836,152 673 89(17) , с точностью до 0,002 % равно значению 6π 5 = 1836,118…

Внутренняя структура протона впервые была экспериментально исследована Р. Хофштадтером путём изучения столкновений пучка электронов высоких энергий (2 ГэВ ) с протонами (Нобелевская премия по физике 1961 г.) . Протон состоит из тяжёлой сердцевины (керна) радиусом см, с высокой плотностью массы и заряда, несущей ≈ 35 % {\displaystyle \approx 35\,\%} электрического заряда протона и окружающей его относительно разреженной оболочки. На расстоянии от ≈ 0 , 25 ⋅ 10 − 13 {\displaystyle \approx 0{,}25\cdot 10^{-13}} до ≈ 1 , 4 ⋅ 10 − 13 {\displaystyle \approx 1{,}4\cdot 10^{-13}} см эта оболочка состоит в основном из виртуальных ρ - и π -мезонов, несущих ≈ 50 % {\displaystyle \approx 50\,\%} электрического заряда протона, затем до расстояния ≈ 2 , 5 ⋅ 10 − 13 {\displaystyle \approx 2{,}5\cdot 10^{-13}} см простирается оболочка из виртуальных ω - и π -мезонов, несущих ~15 % электрического заряда протона .

Давление в центре протона, создаваемое кварками, составляет порядка 10 35 Па (10 30 атмосфер), то есть выше давления внутри нейтронных звёзд .

Магнитный момент протона измеряется путём измерения отношения резонансной частоты прецессии магнитного момента протона в заданном однородном магнитном поле и циклотронной частоты обращения протона по круговой орбите в том же самом поле .

С протоном связаны три физических величины, имеющих размерность длины:

Измерения радиуса протона с помощью атомов обычного водорода, проводимые разными методами с 1960-х годов, привели (CODATA -2014) к результату 0,8751 ± 0,0061 фемтометра (1 фм = 10 −15 м ) . Первые эксперименты с атомами мюонного водорода (где электрон заменён на мюон) дали для этого радиуса на 4 % меньший результат 0,84184 ± 0,00067 фм . Причины такого различия пока неясны.

Так называемый слабый заряд протона Q w ≈ 1 − 4 sin 2 θ W , определяющий его участие в слабых взаимодействиях путём обмена Z 0 -бозоном (аналогично тому как электрический заряд частицы определяет её участие в электромагнитных взаимодействиях путём обмена фотоном), составляет 0,0719 ± 0,0045 , согласно экспериментальным измерениям нарушения чётности при рассеянии поляризованных электронов на протонах . Измеренная величина в пределах экспериментальной погрешности согласуется с теоретическими предсказаниями Стандартной модели (0,0708 ± 0,0003 ) .

Стабильность

Свободный протон стабилен, экспериментальные исследования не выявили никаких признаков его распада (нижнее ограничение на время жизни - 2,9⋅10 29 лет независимо от канала распада , 8,2⋅10 33 лет для распада в позитрон и нейтральный пион , 6,6⋅10 33 лет для распада в положительный мюон и нейтральный пион ). Поскольку протон является наиболее лёгким из барионов , стабильность протона является следствием закона сохранения барионного числа - протон не может распасться в какие-либо более лёгкие частицы (например, в позитрон и нейтрино) без нарушения этого закона. Однако многие теоретические расширения Стандартной модели предсказывают процессы (пока не наблюдавшиеся), следствием которых было бы несохранение барионного числа и, следовательно, распад протона.

Протон, связанный в атомном ядре, способен захватывать электрон с электронной K-, L- или M-оболочки атома (т. н. «электронный захват »). Протон атомного ядра, поглотив электрон, превращается в нейтрон и одновременно испускает нейтрино : p+e − → e . «Дырка» в K-, L- или M-слое, образовавшаяся при электронном захвате, заполняется электроном одного из вышележащих электронных слоев атома с излучением характеристических рентгеновских лучей, соответствующих атомному номеру Z − 1 , и/или Оже-электронов . Известно свыше 1000 изотопов от 7
4 до 262
105 , распадающихся путём электронного захвата. При достаточно высоких доступных энергиях распада (выше 2m e c 2 ≈ 1,022 МэВ ) открывается конкурирующий канал распада - позитронный распад p → +e + e . Следует подчеркнуть, что эти процессы возможны только для протона в некоторых ядрах, где недостающая энергия восполняется переходом образовавшегося нейтрона на более низкую ядерную оболочку; для свободного протона они запрещены законом сохранения энергии.

Источником протонов в химии являются минеральные (азотная , серная , фосфорная и другие) и органические (муравьиная , уксусная , щавелевая и другие) кислоты. В водном растворе кислоты способны к диссоциации с отщеплением протона, образующего катион гидроксония .

В газовой фазе протоны получают ионизацией - отрывом электрона от атома водорода . Потенциал ионизации невозбуждённого атома водорода составляет 13,595 эВ . При ионизации молекулярного водорода быстрыми электронами при атмосферном давлении и комнатной температуре первоначально образуется молекулярный ион водорода (H 2 +) - физическая система, состоящая из двух протонов, удерживающихся вместе на расстоянии 1,06 одним электроном. Стабильность такой системы, по Полингу , вызвана резонансом электрона между двумя протонами с «резонансной частотой», равной 7·10 14 с −1 . При повышении температуры до нескольких тысяч градусов состав продуктов ионизации водорода изменяется в пользу протонов - H + .

Применение

См. также

Примечания

  1. http://physics.nist.gov/cuu/Constants/Table/allascii.txt Fundamental Physical Constants --- Complete Listing
  2. CODATA Value: proton mass
  3. CODATA Value: proton mass in u
  4. Ahmed S.; et al. (2004). “Constraints on Nucleon Decay via Invisible Modes from the Sudbury Neutrino Observatory”. Physical Review Letters . 92 (10): 102004. arXiv :hep-ex/0310030 . Bibcode :2004PhRvL..92j2004A . DOI :10.1103/PhysRevLett.92.102004 . PMID .
  5. CODATA Value: proton mass energy equivalent in MeV
  6. CODATA Value: proton-electron mass ratio
  7. , с. 67.
  8. Хофштадтер P. Структура ядер и нуклонов // УФН . - 1963. - Т. 81, № 1. - С. 185-200. - ISSN. - URL: http://ufn.ru/ru/articles/1963/9/e/
  9. Щёлкин К. И. Виртуальные процессы и строение нуклона // Физика микромира - М.: Атомиздат, 1965. - С. 75.
  10. Жданов Г. Б. Упругие рассеяния, периферические взаимодействия и резононы // Частицы высоких энергий. Высокие энергии в космосе и лаборатории - М.: Наука, 1965. - С. 132.
  11. Burkert V. D. , Elouadrhiri L. , Girod F. X. The pressure distribution inside the proton (англ.) // Nature. - 2018. - May (vol. 557 , no. 7705 ). - P. 396-399 . - DOI :10.1038/s41586-018-0060-z .
  12. Бете, Г. , Моррисон Ф. Элементарная теория ядра. - М: ИЛ, 1956. - С. 48.

Некогда считалось, что самая мелкая единица строения любого вещества - это молекула. Затем, с изобретением более мощных микроскопов, человечество с удивлением открыло для себя понятие атома - составной частицы молекул. Казалось бы, куда меньше? Меж тем, еще позже выяснилось, что атом, в свою очередь, состоит из более мелких элементов.

В начала 20 века британский физик открыл наличие в атоме ядер - центральных структур, именно этот момент обозначил начало череды бесконечных открытий, касающихся устройства мельчайшего структурного элемента вещества.

На сегодняшний день, основываясь на ядерной модели и благодаря многочисленным исследованиям, известно, что атом состоит из ядра, которое окружено электронным облаком. В составе такого "облака" - электроны, или элементарные частицы с отрицательным зарядом. В состав ядра, наоборот, входят частицы с электрически положительным зарядом, получившие название протоны. Уже упомянутый выше британский физик смог наблюдать и впоследствии описать это явление. В 1919 году он проводил эксперимент, который заключался в том, что альфа-частицы выбивали ядра водорода из ядер других элементов. Таким образом, ему удалось выяснить и доказать, что протоны - не что иное, как ядро без единственного электрона. В современной физике протоны обозначаются с помощью символа p или p+ (что обозначает положительный заряд).

Протон в переводе с греческого означает "первый, основной" - элементарная частица, относящаяся к классу барионов, т.е. относительно тяжелых Представляет собой стабильную структуру, время его жизни составляет более 2,9 х 10(29) лет.

Строго говоря, кроме протона, содержит также и нейтроны, которые, исходя из названия, нейтрально заряжены. Оба этих элемента называют нуклонами.

Масса протона, в силу вполне очевидных обстоятельств, долгое время не могла быть измерена. Теперь же известно, что она составляет

mp=1,67262∙10-27 кг.

Именно таким образом выглядит и масса покоя протона.

Перейдем к рассмотрению специфических для разных областей физики пониманий массы протона.

Масса частицы в рамках ядерной физики чаще принимает иной вид, единицей измерения ее является а.е.м.

А.е.м. - атомная единица массы. Одна а.е.м. равняется 1/12 массы атома углерода, массовое число которого равняется 12. Отсюда 1 атомная единица массы равна 1,66057·10-27 кг.

Масса протона, следовательно, выглядит следующим образом:

mp = 1,007276 а. е. м.

Существует еще один способ выразить массу этой положительно заряженной частицы, используя иные единицы измерения. Для этого сначала нужно принять как аксиому эквивалентность массы и энергии E=mc2. Где с - а m - масса тела.

Масса протона в данной случае будет измеряться в мегаэлектронвольтах или МэВ. Такая единица измерения используется исключительно в ядерной и атомной физике и служит для измерения той энергии, что необходима для переноса частицы между двумя точками в С тем условием, что разница потенциалов между этими точками равна 1 Вольту.

Отсюда, учитывая, что 1 а.е.м. = 931,494829533852 МэВ, масса протона равна приблизительно

Такой вывод был получен на основании масс-спектроскопических измерений, и именно массу в том виде, в котором она приведена выше, принято также называть и энергией покоя протона .

Таким образом, ориентируясь на потребности эксперимента, масса мельчайшей частицы может быть выражена тремя разными значениями, в трех разных единицах измерения.

Кроме того, масса протона может быть выражена относительно массы электрона, который, как известно, гораздо "тяжелее" положительно заряженной частицы. Равняться масса при грубом подсчете и значительных погрешностях в этом случае будет 1836,152 672 относительно массы электрона.

Данная статья была написана Владимиром Горунович для сайта "Викизнание" еще до того как аналогичная статья на сайте Викизнание подверглась правке, исказившей действительность. Теперь я могу свободно писать правду только на своих сайтах, и еще тех сайтах, которые позволяют это сделать.

  • 2 Протон в физике
    • 2.1 Радиус протона
    • 2.2 Магнитный момент протона
    • 2.4 Масса покоя протона
    • 2.5 Время жизни протона
  • 3 Протон в Стандартной модели
  • 4 Протон - это элементарная частица
  • 6 Протон - итог

1 Протон (элементарная частица)

Протон - элементарная частица квантовое число L=3/2 (спин = 1/2) - группа барионов, подгруппа протона, электрический заряд +e (систематизация по полевой теории элементарных частиц).


Подгруппа протона (основные и возбужденные состояния)

2 Протон в физике

Протон - элементарная частица квантовое число L=3/2 (спин = 1/2) - группа барионов, подгруппа протона, электрический заряд +e (систематизация по полевой теории элементарных частиц).
Согласно полевой теории элементарных частиц (теории - построенной на научном фундаменте и единственной получившей правильный спектр всех элементарных частиц), протон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей. Все голословные утверждения Стандартной модели о том, что протон якобы состоит из кварков, не имеют ничего общего с действительностью. - Физика экспериментально доказала, что протон обладает электромагнитными полями, и еще гравитационным полем. О том, что элементарные частицы не просто обладают - а состоят из электромагнитных полей, физика гениально догадалась еще 100 лет назад, но вот построить теорию никак не удавалось до 2010 года. Теперь в 2015 году появилась еще и теория гравитации элементарных частиц, установившая электромагнитную природу гравитации и получившая уравнения гравитационного поля элементарных частиц, отличные от уравнений гравитации, на основании которых была построена не одна математическая сказка в физике.



Структура электромагнитного поля протона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле)

Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,346%,
  • постоянное магнитное поле (H) - 7,44%,
  • переменное электромагнитное поле - 92,21%.

Соотношение между энергией сосредоточенной в постоянном магнитном поле протона и энергии сосредоточенной в постоянном электрическом поле равно 21,48. Этим объясняется наличие у протона ядерных сил. Структура протона приведена на рисунке.

Электрическое поле протона состоит из двух областей: внешней области с положительным зарядом и внутренней области с отрицательным зарядом. Разность зарядов внешней и внутренней областей определяет суммарный электрический заряд протона +e. В основе его квантования лежат геометрия и строение элементарных частиц.

А так выглядят фундаментальные взаимодействия элементарных частиц, действительно существующие в природе:


2.1 Радиус протона

Полевая теория элементарных частиц определяет радиус (r) частицы как расстояние от центра до точки в которой достигается максимум плотности массы.


Для протона это будет 3,4212 10 -16 м. К этому необходимо добавить еще толщину слоя электромагнитного поля, в результате получится:


что равно 4,5616 10 -16 м. Таким образом, внешняя граница протона находится от центра на расстоянии 4,5616 10 -16 м. Но необходимо помнить, что небольшая (порядка 1%) часть массы покоя, заключенная в постоянном электрическом и постоянном магнитном полях, в соответствии с классической электродинамикой, находится вне данного радиуса.

2.2 Магнитный момент протона

В противовес квантовой теории полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращением электрических зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому магнитные поля есть у всех элементарных частиц с квантовым числом L>0.

Полевая теория элементарных частиц не считает магнитный момент протона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.

Так основной магнитный момент протона создается двумя токами:

  • (+) с магнитным моментом +2 eħ/m 0p c
  • (-) с магнитным моментом -0,5 eħ/m 0p c

Для получения результирующего магнитного момента протона надо сложить оба момента, умножить на процент энергии переменного электромагнитного поля, разделенный на 100 процентов и добавить спиновую составляющую, в результате получим 1,3964237 eh/m 0p c. Для того чтобы перевести в обычные ядерные магнетоны надо полученное число умножить на два - в итоге имеем 2,7928474.

2.3 Электрическое поле протона

2.3.1 Электрическое поле протона в дальней зоне

Знания физики об структуре электрического поля протона менялись по мере развития физики. Первоначально считалось, что электрическое поле протона представляет собой поле точечного электрического заряда +e. Для данного поля будут:
потенциал электрического поля протона в точке (А) в дальней зоне (r >> r p) точно, в системе СИ равен:


напряженность E электрического поля протона в дальней зоне (r >> r p) точно, в системе СИ равна:



где n = r /|r| - единичный вектор из центра протона в направлении точки наблюдения (А), r - расстояние от центра протона до точки наблюдения, e - элементарный электрический заряд, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, r p =Lh/(m 0~ c) - радиус протона в полевой теории, L - главное квантовое число протона в полевой теории, h - постоянная Планка, m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося протона, c - скорость света. (В системе СГС отсутствует множитель Множитель СИ .)

Данные математические выражения верны для дальней зоны электрического поля протона: r >> r p , но физика тогда предполагала, что их верность распространяется и в ближней зоне, до расстояний порядка 10 -14 см.

2.3.2 Электрические заряды протона

В первой половине 20 века физика считала, что у протона имеется только один электрический заряд и он равен +e.

После появления гипотезы кварков, физика предположила что внутри протона имеются не один, а три электрических заряда: два электрических заряда +2e/3 и один электрический заряд -e/3. В сумме эти заряды дают +e. Это было сделано, поскольку физика предположила, что протон имеет сложную структуру и состоит из двух u-кварков с зарядом +2e/3 и одного d-кварка с зарядом -e/3. Но кварки не были найдены ни в природе, ни на ускорителях ни при каких энергиях и оставалось либо принять их существование на веру (что и сделали сторонники Стандартной модели), либо искать другую структуру элементарных частиц. Но вместе с этим в физике постоянно накапливалась экспериментальная информация об элементарных частицах и когда ее накопилось достаточно для переосмысления сделанного, на свет появилась полевая теория элементарных частиц.

Согласно полевой теории элементарных частиц, постоянное электрическое поле элементарных частиц с квантовым числом L>0, как заряженных, так и нейтральных, создается постоянной компонентой электромагнитного поля соответствующей элементарной частицы (не электрический заряд является первопричиной электрического поля, как физика считала в 19 веке, а электрические поля элементарных частиц таковы, что они соответствуют полям электрических зарядов). А поле электрического заряда возникает в результате наличия асимметрии между внешней и внутренней полусферами, генерирующими электрические поля противоположных знаков. Для заряженных элементарных частиц в дальней зоне генерируется поле элементарного электрического заряда, а знак электрического заряда определяется знаком электрического поля, генерируемого внешней полусферой. В ближней зоне данное поле обладает сложной структурой и является дипольным, но дипольным моментом оно не обладает. Для приближенного описания данного поля как системы точечных зарядов потребуется не менее 6 "кварков" внутри протона - лучше если взять 8 "кварков". Понятное дело, что электрические заряды таких "кварков" будут совершенно иными, чем считает стандартная модель (со своими кварками).

Полевая теория элементарных частиц установила, что у протона, как и у любой другой положительно заряженной элементарной частицы, можно выделить два электрических заряда и соответственно два электрических радиуса:

  • электрический радиус внешнего постоянного электрического поля (заряда q + =+1.25e) - r q+ = 4.39 10 -14 см,
  • электрический радиус внутреннего постоянного электрического поля (заряда q - =-0.25e) - r q- = 2.45 10 -14 см.

Данные характеристики электрического поля протона соответствуют распределению 1 полевой теории элементарных частиц. Физика пока экспериментально не установила точность данного распределения, и какое распределение наиболее точно соответствует реальной структуре постоянного электрического поля протона в ближней зоне, равно как и саму структуру электрического поля протона в ближней зоне (на расстояниях порядка rp). Как видите, электрические заряды близки по величине к зарядам предполагаемых кварков (+4/3e=+1.333e и -1/3e=-0.333e) в протоне, но в отличие от кварков, электромагнитные поля в природе существуют, и аналогичной структурой постоянного электрического поля обладает любая положительно заряженная элементарная частица, независимо от величины спина и... .

Величины электрических радиусов для каждой элементарной частицы уникальны и определяются главным квантовым числом в полевой теории L, величиной массы покоя, процентом энергии заключенной в переменном электромагнитном поле (где работает квантовая механика) и структурой постоянной составляющей электромагнитного поля элементарной частицы (одинаковой для всех элементарных частиц с заданным главным квантовым числом L), генерирующей внешнее постоянное электрическое поле. Электрический радиус указывает среднее местонахождение равномерно распределенного по окружности электрического заряда, создающего аналогичное электрическое поле. Оба электрических заряда лежат в одной плоскости (плоскости вращения переменного электромагнитного поля элементарной частицы) и имеют общий центр, совпадающий с центром вращения переменного электромагнитного поля элементарной частицы.

2.3.3 Электрическое поле протона в ближней зоне

Зная величины электрических зарядов внутри элементарной частицы и их местоположение, можно определить и создаваемое ими электрическое поле.

Напряженность E электрического поля протона в ближней зоне (r~r p), в системе СИ, как векторная сумма, приблизительно равна:


где n + = r + /|r + | - единичный вектор из ближней (1) или дальней (2) точки заряда протона q + в направлении точки наблюдения (А), n - = r - /|r - | - единичный вектор из ближней (1) или дальней (2) точки заряда протона q - в направлении точки наблюдения (А), r - расстояние от центра протона до проекции точки наблюдения на плоскость протона, q + - внешний электрический заряд +1.25e, q - - внутренний электрический заряд -0.25e, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, z - высота точки наблюдения (А) (расстояние от точки наблюдения до плоскости протона), r 0 - нормировочный параметр. (В системе СГС отсутствует множитель Множитель СИ .)

Данное математическое выражение представляет собой сумму векторов и ее надо вычислять по правилам сложения векторов, поскольку это поле двух распределенных электрических зарядов (+1.25e и -0.25e). Первое и третье слагаемое соответствуют ближним точкам зарядов, второе и четвертое - дальним. Данное математическое выражение не работает во внутренней (кольцевой) области протона, генерирующей его постоянные поля (при одновременном выполнении двух условий: h/m 0~ c

Потенциал электрического поля протона в точке (А) в ближней зоне (r~r p), в системе СИ приблизительно равен:


где r 0 - нормировочный параметр, величина которого может отличаться от r 0 в формуле E. (В системе СГС отсутствует множитель .) Данное математическое выражение не работает во внутренней (кольцевой) области протона, генерирующей его постоянные поля (при одновременном выполнении двух условий: h/m 0~ c

Калибровку r 0 для обоих выражений ближней зоны необходимо производить на границе области, генерирующей постоянные поля протона.

2.4 Масса покоя протона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и протона, определяется как эквивалент энергии их электромагнитных полей:


где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле, постоянное магнитное поле, переменное электромагнитное поле. Эта маленькая, но очень емкая для физики формула, на основании которой получены уравнения гравитационного поля элементарных частиц, отправит в утиль не одну сказочную "теорию" - поэтому ее возненавидят некоторые их авторы.

Как следует из приведенной формулы, величина массы покоя протона зависит от условий, в которых протон находится. Так поместив протон в постоянное внешнее электрическое поле (например, атомное ядро), мы повлияем на E 2 , что отразится на массе протона и его стабильности. Аналогичная ситуация возникнет при помещении протона в постоянное магнитное поле. Поэтому некоторые свойства протона внутри атомного ядра, отличаются от тех же свойств свободного протона в вакууме, вдали от полей.

2.5 Время жизни протона

Указанное в таблице время жизни соответствует свободному протону.

Полевая теория элементарных частиц утверждает, что время жизни элементарной частицы зависит от условий, в которых она находится. Поместив протон во внешнее поле (например, электрическое) мы изменяем энергию, содержащуюся в его электромагнитном поле. Можно выбрать знак внешнего поля так, чтобы внутренняя энергия протона увеличилась. Можно подобрать такую величину напряженности внешнего поля, что станет возможным распад протона в нейтрон позитрон и электронное нейтрино и следовательно протон станет нестабильным. Именно это наблюдается в атомных ядрах, в них электрическое поле соседних протонов запускает распад протона ядра. При внесении в ядро дополнительной энергии распады протонов могут начаться при меньшей напряженности внешнего поля.

3 Протон в Стандартной модели

Утверждается, что протон является связанным состоянием трёх кварков: двух «верхних» (u) и одного «нижнего» (d) кварков (предполагаемая кварковая структура протона: uud), а нейтрон имеет (кварковую структуру udd). Близость значений масс протона и нейтрона объясняется близостью масс гипотетических кварков (u и d).

Поскольку наличие кварков в природе экспериментально не доказано, а имеются лишь косвенные свидетельства, которые можно интерпретировать как наличие следов кварков в некоторых взаимодействиях элементарных частиц, но можно и интерпретировать иначе, то утверждение Стандартной модели, что протон обладает кварковой структурой остается всего лишь бездоказательным предположением.

Любая модель, в том числе и Стандартная вправе предположить любую структуру элементарных частиц включая протона, но пока на ускорителях не будут обнаружены соответствующие частицы, из которых якобы состоит протон, утверждение модели следует считать не доказанным.

В 1964 году Гелл-манн и Цвейг независимо предложили гипотезу существования кварков, из которых, по их мнению, состоят адроны. Новые частицы были наделены дробным электрическим зарядом, не существующим в природе.

Лептоны в эту Кварковую модель, которая впоследствии переросла в Стандартную модель, НЕ вписались - поэтому были признаны истинно элементарными частицами.

Чтобы объяснить связь кварков в адроне, было предположено существование в природе сильного взаимодействия и его переносчиков - глюонов. Глюоны, как и положено в Квантовой теории, наделили единичным спином, тождественности частицы и античастицы и нулевой величиной массы покоя, как у фотона.

В действительности, в природе существует не сильное взаимодействие гипотетических кварков, а ядерные силы нуклонов - и это не одно и то же.

Прошло 50 лет. Кварки так и не были найдены в природе и нам сочинили новую математическую сказочку под названием «Конфайнмент». Мыслящий человек с легкостью увидит в ней откровенное игнорирование фундаментального закона природы - закона сохранения энергии. Но это сделает мыслящий человек, а сказочники получили устроившее их оправдание, почему в природе нет кварков в свободном виде.

Глюоны также НЕ были найдены в природе. Дело в том, что единичным спином могут обладать в природе только векторные мезоны (и еще одно из возбужденных состояний мезонов), но у каждого векторного мезона имеется античастица. - Поэтому векторные мезоны на кандидаты в «глюоны» никак не подходят. Остается девятка первых возбужденный состояний мезонов, но 2 из них противоречат самой Стандартной модели и их существование в природе Стандартная модель не признает, а остальные неплохо изучены физикой, и выдать их за сказочные глюоны не получится. Есть еще последний вариант: выдать за глюон связанное состояние из пары лептонов (мюонов или тау-лептонов) - но и это при распаде можно вычислить.

Так что, глюонов в природе также нет, как нет в природе кварков и вымышленного сильного взаимодействия.
Вы считаете, что сторонники Стандартной модели этого не понимают - еще как понимают, вот только тошно признать ошибочность того, чем занимался десятилетиями. А поэтому мы видим новые математические сказки....


4 Протон это элементарная частица

Представления физики о структуре протона менялись, по мере развития физики.
Первоначально физика считала протон элементарной частицей, и так было до 1964 года, когда ГеллМанн и Цвейг независимо предложили гипотезу кварков.

Первоначально, кварковая модель адронов ограничивалась только тремя гипотетическими кварками и их античастицами. Это позволяло правильно описать спектр известных на тот момент элементарных частиц, без учета лептонов, которые не вписались в предлагаемую модель и потому признавались элементарными, наравне с кварками. Платой за это явилось введение, не существующих в природе, дробных электрических зарядов. Затем, по мере развития физики и поступления новых экспериментальных данных, кварковая модель постепенно разрасталась, трансформировалась, в итоге превратившись в Стандартную модель.

Физики усердно занялись поисками новых гипотетических частиц. Поиски кварков велись в космических лучах, в природе (поскольку их дробный электрический заряд невозможно скомпенсировать) и на ускорителях.

Шли десятилетия, росла мощность ускорителей, а результат поисков гипотетических кварков был всегда один: кварки НЕ найдены в природе.

Видя перспективу гибели кварковой (а затем Стандартной) модели, ее сторонники сочинили и подсунули человечеству сказочку о том, что в некоторых экспериментах наблюдаются следы кварков. - Проверить эту информацию невозможно - экспериментальные данные обрабатываются с помощью Стандартной модели, а она всегда выдаст нечто за то, что ей нужно. История физики знает примеры, когда вместо одной частицы подсовывали другую - последней такой манипуляцией экспериментальными данными явилось подсовывание векторного мезона в качестве сказочного бозона Хиггса, якобы отвечающего за массу частиц, но при этом не создающую их гравитационное поле. За это надувательство даже дали Нобелевскую премию по физике. В нашем случае в качестве сказочных кварков подсунули стоячие волны переменного электромагнитного поля, о котором писали волновые теории элементарных частиц, а физика 21 века (в лице Теории гравитации элементарных частиц) установила природный механизм инерционных свойств элементарных частиц вещества Вселенной, не связанный с математической сказкой о бозоне Хиггса.

Когда трон под стандартной моделью вновь зашатался, ее сторонники сочинили и подсунули человечеству новую сказочку для самых маленьких, под названием «Конфайнмент». Любой мыслящий человек сразу увидит в ней издевательство над законом сохранения энергии - фундаментальным законом природы. Но сторонники Стандартной модели не желают видеть ПРАВДУ.

5 Когда физика оставалась наукой

Когда физика еще оставалась наукой в ней истина определялась не мнением большинства - а экспериментом. В этом принципиальное отличие ФИЗИКИ-НАУКИ от математических сказок, выдаваемых за физику.
Все эксперименты по поиску гипотетических кварков (кроме конечно на-ду-ва-тель-ства) однозначно показали: кварков в природе НЕТ.

Все голословные утверждения Стандартной модели о том, что протон якобы состоит из кварков, не имеют ничего общего с действительностью. - Физика экспериментально доказала, что протон обладает электромагнитными полями, и еще гравитационным полем. О том, что элементарные частицы не просто обладают - а состоят из электромагнитных полей, физика гениально догадалась еще 100 лет назад, но вот построить теорию никак не удавалось до 2010 года. Теперь в 2015 году появилась еще и теория гравитации элементарных частиц, установившая электромагнитную природу гравитации и получившая уравнения гравитационного поля элементарных частиц, отличные от уравнений гравитации, на основании которых была построена не одна математическая сказка в физике.

6 Протон - итог

Я не стал в основной части статьи подробно говорить о сказочных кварках (со сказочными глюонами), поскольку их в природе НЕТ и нечего забивать голову сказками (без необходимости) - а без основополагающих элементов фундамента: кварков с глюонами рухнула стандартная модель - время ее господства в физике ЗАВЕРШИЛОСЬ (см. Стандартная модель).

Можно сколь угодно долго не замечать места электромагнетизма в природе (встречаясь с ним на каждом шагу: свет, тепловое излучение, электричество, телевидение, радио, телефонная связь, в том числе и сотовая, интернет, без которого человечество не узнало бы о существовании Полевой теории элементарных частиц, ...), и продолжать сочинять новые сказочки взамен обанкротившихся, выдавая их за науку; можно с упорством, достойным лучшего применения, продолжать повторять заученные СКАЗКИ Стандартной модели и Квантовой теории; но электромагнитные поля в природе были, есть, будут и прекрасно обходятся без сказочных виртуальных частиц, впрочем, как и создаваемая электромагнитными полями гравитация, а вот у сказок есть время рождения и время, когда они перестают влиять на людей. Что касается природы, то ей НЕТ никакого дела до сказок, и любой иной литературной деятельности человека, даже если за них присуждается Нобелевская премия по физике. Природа устроена так, как она устроена, а задача ФИЗИКИ-НАУКИ понять и описать это.

Теперь перед Вами открылся новый мир - мир дипольных полей, о существовании которых физика 20 века и не подозревала. Вы увидели, что у протона имеются не один, а два электрических заряда (внешний и внутренний) и соответствующие им два электрических радиуса. Вы увидели, из чего складывается масса покоя протона и что воображаемый бозон Хиггса оказался не у дел (решения Нобелевского комитета - это еще не законы природы...). Более того, величина массы и время жизни зависят от полей, в которых находится протон. Из того, что свободный протон стабилен, еще не следует, что он будет оставаться стабильным всегда и везде (распады протона наблюдаются в атомных ядрах). Все это выходит за рамки представлений, господствовавших в физике второй половины двадцатого века. - Физика 21 века - Новая физика переходит на новый уровень познания материи, а нас ждут новые интересные открытия.