Экспериментальное исследование распределения напряжений при внецентренном растяжении или сжатии. Внецентренное действие продольной силы Определение напряжений при внецентренном растяжении

Рассмотрим прямой стержень, нагруженный на торце силами, направленными параллельно оси Ох. Равнодействующая этих сил F приложена в точке С. В локальной правосторонней системе координат yOz , совпадающей с главными центральными осями сечения, координаты точки С равны а и b (рис. 5.18).

Заменим приложенную нагрузку статически эквивалентной ей системой сил и моментов. Для этого перенесем равнодействующую силу F в центр тяжести сечения О и догрузим стержень двумя изгибающими моментами, равными произведению силы Т^на ее плечи относительно осей координат: M ff = Fa и M z = Fb.

Отметим, что по правилу правосторонней системы координат для точки С, лежащей в первой четверти, изгибающие моменты формально получат сле-

Рис. 5.18. Прямой стержень, нагруженный на торце силами, направленными параллельно оси Ох

дующие знаки: М у = Fa и М 7 = -Fb. При этом в элементарной площадке, лежащей в первой четверти, оба момента вызывают растягивающее напряжение.

Используя принцип независимости действия сил, определим напряжения в текущей точке сечения с координатами у и z от каждого силового фактора отдельно. Общее напряжение получим суммированием всех трех составляющих напряжений:

Определим положение нейтральной оси. Для этого в соответствии с формулой (5.69) приравняем к нулю значение нормального напряжения в текущей точке:

В результате простых преобразований получим уравнение нейтральной линии

где i y и i z - главные радиусы инерции , определяемые по формулам (3.14).

Таким образом, в случае внецентренного растяжения-сжатия нейтральная линия не проходит через центр тяжести сечения (рис. 5.19), на что указывает наличие в уравнении (5.70) отличающегося от нуля свободного члена.

Максимальные напряжения возникают в точках сечения А и В, наиболее удаленных от нейтральной линии. Установим соотношение между координатами точки приложения силы и положением нейтральной линии. Для этого определим точки пересечения этой линией координатных осей:

Рис. 5.19.

Полученные формулы показывают, что координата точки приложения силы а и координата точки пересечения нейтральной линией оси координат Oz (точка г 0) имеют противоположные знаки. То же самое можно сказать о величинах b и у 0 . Таким образом, точка приложения равнодействующей силы и нейтральная линия находятся по разные стороны относительно начала координат.

Согласно полученным формулам при приближении точки приложения силы к центру тяжести сечения нейтральная линия отдаляется от центральной зоны. В предельном случае (а = b = 0) приходим к случаю центрального растяжения-сжатия.

Представляет интерес определение зоны приложения силы, при котором напряжения в сечении будут иметь одинаковый знак. В частности, для материалов, плохо сопротивляющихся растяжению, сжимающую силу рационально прилагать именно в этой зоне, чтобы в сечении действовали только сжимающие напряжения. Такая зона вокруг центра тяжести сечения называется ядром сечения.

Если сила приложена в ядре сечения, то нейтральная линия не пересекает сечение. В случае приложения силы по границе ядра сечения нейтральная линия касается контура сечения. Для определения ядра сечения можно использовать формулу (5.71).

Если нейтральную линию представить как касательную к контуру сечения и рассмотреть все возможные положения касательной и соответствующие этим положениям точки приложения силы, то точки приложения силы очертят ядро сечения.


Рис. 5.20.

а - эллипс; 6 - прямоугольник

Многие элементы строительных конструкций (колонны, стойки, опоры) находятся под воздействием сжимающих сил, приложенных не в центре тяжести сечения. На рис. 12.9 показана колонна, на которую опирается балка перекрытия. Как видно, сила действует по отношению к оси колонны с эксцентриситетом е, и таким образом, в произвольном сечении а-а колонны наряду с продольной силой N = возникает изгибающий момент, величина которого равна Ре. Внецентренное растяжение (сжатие) стержня представляет такой вид деформирования, при котором равнодействующие внешних сил действуют вдоль прямой, параллельной оси стержня. В дальнейшем будем рассматривать главным образом задачи внецентренного сжатия. При внецентренном растяжении во всех приводимых расчетных формулах следует изменить знак перед силой Р на противоположный.

Пусть стержень произвольного поперечного сечения (рис. 12.10) нагружен на торце внецентренно приложенной сжимающей силой Р, направленной параллельно оси Ох. Примем положительные

направления главных осей инерции сечения Оу и Oz таким образом, чтобы точка приложения силы Р находилась в первой четверти осей координат. Обозначим координаты точки приложения силы Р через у р и z P -

Внутренние усилия в произвольном сечении стержня равны

Знаки минус у изгибающих моментов обусловлены тем, что в первой четверти осей координат эти моменты вызывают сжатие. Величины внутренних усилий в данном примере не изменяются по длине стержня, и таким образом, распределение напряжений в сечениях, достаточно удаленных от места приложения нагрузки, будет одинаковым.

Подставляя (12.11) в (12.1), получим формулу для нормальных напряжений при внецентренном сжатии:

Эту формулу можно преобразовать к виду

где i , i- главные радиусы инерции сечения. При этом

Положив в (12.12) о = 0, получим уравнение нулевой линии:

Здесь у 0 и z 0 - координаты точек нулевой линии (рис. 12.11). Уравнение (12.14) является уравнением прямой, не проходящей через центр тяжести сечения. Чтобы провести нулевую линию, найдем точки ее пересечения с осями координат. Полагая в (12.14) последовательно у 0 = 0 и z 0 = 0, соответственно найдем

где a z и а у - отрезки, отсекаемые нулевой линией на осях координат (рис. 12.11).

Установим особенности положения нулевой линии при вне- центренном сжатии.

  • 1. Из формул (12.15) следует, что а у и a z имеют знаки, противоположные знакам соответственно у р и z P - Таким образом, нулевая линия проходит через те четверти осей координат, которые не содержат точку приложения силы (рис. 12.12).
  • 2. С приближением точки приложения силы Р по прямой к центру тяжести сечения координаты этой точки у р и z P уменьшаются. Из (12.15) следует, что при этом абсолютные значения длин отрезков а у и a z увеличиваются, то есть нулевая линия удаляется от центра тяжести, оставаясь параллельной самой себе (рис. 12.13). В пределе при Z P = y P = 0 (сила приложена в центре тяжести) нулевая линия удаляется в бесконечность. В этом случае в сечении напряжения будут постоянными и равными о = -P/F.
  • 3. Если точка приложения силы Р находится на одной из главных осей, нулевая линия параллельна другой оси. Действительно, положив в (12.15), например, у р = 0, получим, что а у = то есть нулевая линия не пересекает ось Оу (рис. 12.14).
  • 4. Если точка приложения силы перемещается по прямой, не проходящей через центр тяжести, то нулевая линия поворачивается вокруг некоторой точки. Докажем это свойство. Точкам приложения сил Р х и Р 2 , расположенным на осях координат, соответствуют нулевые линии 1 - 1 и 2-2, параллельные осям (рис. 12.15), которые пересекаются в точке D. Так как эта точка принадлежит двум нулевым линиям, то напряжения в этой точке от одновременно приложенных сил Р х и Р 2 будут равны нулю. Поскольку любую силу Р 3 , точка приложения которой расположена на прямой Р { Р 2 , можно

разложить на две параллельные составляющие, приложенные в точках Pj и Р 2 , то отсюда следует, что напряжения в точке D от действия силы Р 3 также равны нулю. Таким образом, нулевая линия 3-3, соответствующая силе Р 3 , проходит через точку D.

Другими словами, множеству точек Р, расположенных на прямой Р { Р 2 , соответствует пучок прямых, проходящих, через точку D. Справедливо и обратное утверждение: при вращении нулевой линии вокруг некоторой точки точка приложения силы перемещается по прямой, не проходящей через центр тяжести.

Если нулевая линия пересекает сечение, то она делит его на зоны сжатия и растяжения. Так же как и при косом изгибе, из гипотезы плоских сечений следует, что напряжения достигают наибольших значений в точках, наиболее удаленных от нулевой линии. Характер эпюры напряжений в этом случае показан на рис. 12.16, а.

Если нулевая линия расположена вне сечения, то во всех точках сечения напряжения будут одного знака (рис. 12.16, б).

Пример 12.3. Построим эпюру нормальных напряжений в произвольном сечении внецентренно сжатой колонны прямоугольного сечения с размерами b х h (рис. 12.17). Квадраты радиусов инерции сечения согласно (12.22) равны


Отрезки, отсекаемые нулевой линией на осях координат, определяются по формулам (12.15):

Подставляя последовательно в (12.12) координаты наиболее удаленных от нулевой линии точек С и В (рис. 12.18)

найдем

Эпюра о показана на рис. 12.18. Наибольшие сжимающие напряжения по абсолютной величине в четыре раза превосходят значения напряжений, которые были бы в случае центрального приложения силы. Кроме того, в сечении появились значительные растягивающие напряжения. Заметим, что из (12.12) следует, что в центре тяжести (у = z = 0) напряжения равны о = -P/F.

Пример 12.4. Полоса с вырезом нагружена растягивающей силой Р (рис. 12.19, а). Сравним напряжения в сечении ЛВ, достаточно удаленном от торца и места выреза, с напряжениями в сечении CD в месте выреза.

В сечении АВ (рис. 12.19, б) сила Р вызывает центральное растяжение и напряжения равны а = P/F = P/bh.

В сечении CD (рис. 12.19, в) линия действия силы Р не проходит через центр тяжести сечения, и поэтому возникает внецентренное растяжение. Изменив знак в формуле (12.12) на противоположный и приняв у р = 0, получим для этого сечения

Принимая

Нулевая линия в сечении CD параллельна оси Оу и пересекает ось Oz на расстоянии а = -i 2 y /z P - Ь/ 12. В наиболее удаленных от нулевой линии точках сечения C(z - -Ь/ 4) и D(z - Ь/ 4) напряжения согласно (12.16) равны

Эпюры нормальных напряжений для сечений ЛВ и CD показаны на рис. 12.19, б, в.

Таким образом, несмотря на то что сечение CD имеет площадь в два раза меньшую, чем сечение АВ, за счет внецентренного приложения силы растягивающие напряжения в ослабленном сечении возрастают не в два, а в восемь раз. Кроме того, в этом сечении появляются значительные по величине сжимающие напряжения.

Следует заметить, что в приведенном расчете не учитываются дополнительные местные напряжения, возникающие вблизи точки С из-за наличия выточки. Эти напряжения зависят от радиуса выточки (с уменьшением радиуса они увеличиваются) и могут значительно превысить по величине найденное значение а с = 8P/bh. При этом характер эпюры напряжений вблизи точки С будет существенно отличаться от линейного. Определение местных напряжений (концентрация напряжений) рассматривается в главе 18.

Многие строительные материалы (бетон, кирпичная кладка и др.) плохо сопротивляются растяжению. Их прочность на растяжение во много раз меньше, чем на сжатие. Поэтому в элементах конструкций из таких материалов нежелательно появление растягивающих напряжений. Чтобы это условие выполнялось, необходимо, чтобы нулевая линия находилась вне сечения. В противном случае нулевая линия пересечет сечение и в нем появятся растягивающие напряжения. Если нулевая линия является касательной к контуру сечения, то соответствующее положение точки приложения силы является предельным. В соответствии со свойством 2 нулевой линии, если точка приложения силы будет приближаться к центру тяжести сечения, нулевая линия будет удаляться от него. Геометрическое место предельных точек, соответствующих различным касательным к контуру сечения, является границей ядра сечения. Ядром сечения называется выпуклая область вокруг центра тяжести, обладающая следующим свойством: если точка приложения силы находится внутри или на границе этой области, то во всех точках сечения напряжения имеют один знак. Ядро сечения является выпуклой фигурой, поскольку нулевые линии должны касаться огибающей контура сечения и не пересекать его.

Через точку А (рис. 12.20) можно провести бесчисленное множество касательных (нулевых линий); при этом только касательная АС является касательной к огибающей, и ей должна соответствовать определенная точка контура ядра сечения. В то же время, например, нельзя провести касательную к участку АВ контура сечения, поскольку она пересекает сечение.

Построим ядро сечения для прямоугольника (рис. 12.21). Для касательной 1 - 1 а 7 - Ь/ 2; а = . Из (12.15) находим для точки 1, соответствующей этой касательной, z P = -i 2 y / а 7 =-Ь/6; у р - 0. Для касательной 2-2 а у - к/ 2; а 7 =°°, и координаты точки 2 будут равны у р - -h/6; z P - 0. Согласно свойству 4 нулевой линии точки приложения силы, соответствующие различным касательным к правой нижней угловой точке сечения, расположены на прямой 1-2. Положение точек 3 и 4 определяется из условий симметрии. Таким образом, ядро сечения для прямоугольника представляет собой ромб с диагоналями Ь /3 и И/З .

Чтобы построить ядро сечения для круга, достаточно провести одну касательную (рис. 12.22). При этом а = R; а = °о.

"У У ^ ^

Учитывая, что для круга i у - J у /F - R / 4, из (12.15) получим

Таким образом, ядро сечения для круга представляет собой круг с радиусом R/4.

На рис. 12.23, а, 6 показаны ядра сечения для двутавра и швеллера. Наличие четырех угловых точек ядра сечения в каждом из этих примеров обусловлено тем, что огибающая контура и у двутавра и у швеллера является прямоугольником.

Вторым практически важным случаем сложения деформаций от изгиба и от продольных сил является так называемое внецентренное сжатие или растяжение, вызываемое одними продольными силами. Этот вид деформации получается при действии на стержень двух равных и прямопротивоположных сил Р , направленных по прямой АА , параллельной оси стержня (Рис.3 а). Расстояние точки А от центра тяжести сечения ОА=е называется эксцентриситетом .

Рассмотрим сначала случай внецентренного сжатия, как имеющий большее практическое значение.

Нашей задачей явится нахождение наибольших напряжений, материале стержня и проверка прочности. Для решения этой задачи приложим в точках О по две равные и противоположные силы Р (Рис.3 б). Это не нарушит равновесия стержня в целом и не изменит напряжений в его сечениях.

Силы Р , зачеркнутые один раз, вызовут осевое сжатие, а пары сил Р , зачеркнутые дважды, вызовут чистый изгиб моментами . Расчетная схема стержня показана на Рис.3 в. Так как плоскость действия изгибающих пар ОА может не совпадать ни с одной из главных плоскостей инерции стержня, то в общем случае имеет место комбинация продольного сжатия и чистого косого изгиба.

Так как при осевом сжатии и чистом изгибе напряжения во всех сечениях одинаковы, то проверку прочности можно произвести для любого сечения, хотя бы С—С (Рис.3 б, в).

Отбросим верхнюю часть стержня и оставим нижнюю (Рис.3 г). Пусть оси Оу и Oz будут главными осями инерции сечения.

Рис.3. а) расчетная схема б) преобразование нагрузок в)приведенная расчетная схема г) механизм исследования напряжений

Координаты точки А , — точки пересечения линии действия сил Р с плоскостью сечения, — пусть будут и . Условимся выбирать положительные направления осей Оу и Oz таким образом, чтобы точка А оказалась в первом квадранте. Тогда и будут положительны.

Для того чтобы отыскать наиболее опасную точку в выбранном сечении, найдем нормальное напряжение в любой точке В с координатами z и у . Напряжения в сечении С — С будут складываться из напряжений осевого сжатия силой Р и напряжений от чистого косого изгиба парами с моментом Ре , где . Сжимающие напряжения от осевых сил Р в любой точке равны , где — площадь поперечного сечения стержня; что касается косого изгиба, то заменим его действием изгибающих моментов в главных плоскостях. Изгиб в плоскости х Оу вокруг нейтральной оси Oz будет вызываться моментом и даст в точке В нормальное сжимающее напряжение

Точно так же нормальное напряжение в точке В от изгиба в главной плоскости х Oz , вызванное моментом , будет сжимающим и выразится формулой.

Суммируя напряжения от осевого сжатия и двух плоских изгибов и считая сжимающие напряжения отрицательными, получаем такую формулу для напряжения в точке В :


(1)

Эта формула годится для вычисления напряжений в любой точке любого сечения стержня, стоит только вместо у и z подставить координаты точки относительно главных осей с их знаками.

В случае внецентренного растяжения знаки всех составляющих нормального напряжения в точке В изменятся на обратные. Поэтому для того, чтобы получать правильный знак напряжений как при внецентренном сжатии, так и при внецентренном растяжении, нужно, кроме знаков координат у и z , учитывать также и знак силы Р ; при растяжении перед выражением

должен стоять знак плюс, при сжатии — минус.

Полученной формуле можно придать несколько иной вид; вынесем за скобку множитель ; получим:

(2)

Здесь и — радиусы инерции сечения относительно главных осей (вспомним, что и ).

Для отыскания точек с наибольшими напряжениями следует так выбирать у и z , чтобы достигло наибольшей величины. Переменными в формулах (1) и (2) являются два последних слагаемых, отражающих влияние изгиба. А так как при изгибе наибольшие напряжения получаются в точках, наиболее удаленных от нейтральной оси, то здесь, как и при косом изгибе, надо отыскать положение нейтральной оси.

Обозначим координаты точек этой линии через и ; так как в точках нейтральной оси нормальные напряжения равны нулю, то после подстановки в формулу (2) значений и получаем:

(3)

Это и будет уравнение нейтральной оси. Очевидно, мы получили уравнение прямой, не проходящей через центр тяжести сечения.

Чтобы построить эту прямую, проще всего вычислить отрезки, отсекаемые ею на осях координат. Обозначим эти отрезки и . Чтобы найти отрезок , отсекаемый на оси Оу , надо в уравнении (3) положить

тогда мы получаем:

Если величины и положительны, то отрезки и будут отрицательны, т. е. нейтральная ось будет расположена по другую сторону центра тяжести сечения, чем точка А (Рис.3 г).

Нейтральная ось делит сечение на две части — сжатую и растянутую; на Рис.3 г растянутая часть сечения заштрихована. Проводя к контуру сечения касательные, параллельные нейтральной оси, получаем две точки и , в которых будут наибольшие сжимающие и растягивающие напряжения.

Измеряя координаты у и z этих точек и подставляя их значения в формулу (1), вычисляем величины наибольших напряжений в точках и :

Если материал стержня одинаково сопротивляется растяжению и сжатию, то условие прочности получает такой вид:

Для поперечных сечений с выступающими углами, у которых обе главные оси инерции являются осями симметрии (прямоугольник, двутавр и др.) и Поэтому формула упрощается, и мы имеем

Если же материал стержня неодинаково сопротивляется растяжению и сжатию, то необходимо проверить прочность стержня как в растянутой, так и в сжатой зонах.

Однако может случиться, что и для таких материалов будет достаточно одной проверки прочности. Из формул (4) и (5) видно, что положение точки А приложения силы и положение нейтральной оси связаны: чем ближе подходит точка А к центру сечения, тем меньше величины и и тем больше отрезки и . Таким образом, с приближением точки А к центру тяжести сечения нейтральная ось удаляется от него, и наоборот. Поэтому при некоторых положениях точки А нейтральная ось будет проходить вне сечения и все сечение будет работать на напряжения одного знака. Очевидно в этом случае всегда достаточно проверить прочность материала в точке .

Разберем практически важный случай, когда к стержню прямоугольного сечения (Рис. 4) приложена внецентренно сила Р в точке А , лежащей на главной оси сечения Оу . Эксцентриситет ОА равен е , размеры сечения b и d . Применяя полученные выше формулы, имеем:

Рис.4. Расчетная схема бруса прямоугольного сечения.

Напряжение в любой точке В равно

Напряжения во всех точках линии, параллельной оси Oz , одинаковы. Положение нейтральной оси определяется отрезками

Нейтральная ось параллельна оси Oz ; точки с наибольшими растягивающими и сжимающими напряжениями расположены на сторонах 1—1 и 3—3.

Значения и получатся, если подставить вместо у его значения . Тогда

Лекция № 28. Ядро сечения при внецентренном сжатии

При конструировании стержней из материалов, плохо сопротивляющихся растяжению (бетон), весьма желательно добиться того, чтобы все сечение работало лишь на сжатие. Этого можно достигнуть, не давая точке приложения силы Р слишком далеко отходить от центра тяжести сечения, ограничивая величину эксцентриситета.

Конструктору желательно заранее знать, какой эксцентриситет при выбранном типе сечения можно допустить, не рискуя вызвать в сечениях стержня напряжений разных знаков. Здесь вводится понятие о так называемом ядре сечения . Этим термином обозначается некоторая область вокруг центра тяжести сечения, внутри которой можно располагать точку приложения силы Р, не вызывая в сечении напряжений разного знака.

Пока точка А располагается внутри ядра, нейтральная ось не пересекает контура сечения, все оно лежит по одну сторону от нейтральной оси и, стало быть, работает лишь на сжатие. При удалении точки А от центра тяжести сечения нейтральная ось будет приближаться к контуру; граница ядра определится тем, что при расположении точки А на этой границе нейтральная ось подойдет вплотную к сечению, коснется его.

Рис.1. Комбинации положения сжимающей силы и нейтральной линии

Таким образом, если мы будем перемещать точку А так, чтобы нейтральная ось катилась по контуру сечения, не пересекая его, то точка А обойдет по границе ядра сечения. Если контур сечения имеет «впадины», то нейтральная ось будет катиться по огибающей контура.

Чтобы получить очертание ядра, необходимо дать нейтральной оси несколько положений, касательных к контуру сечения, определить для этих положений отрезки и и вычислить координаты и точки приложения силы по формулам, вытекающим из известных зависимостей:

это и будут координаты точек контура ядра и .

При многоугольной форме контура сечения (Рис.2), совмещая последовательно нейтральную ось с каждой из сторон многоугольника, мы по отрезкам и определим координаты и точек границы ядра, соответствующих этим сторонам.

При переходе от одной стороны контура сечения к другой нейтральная ось будет вращаться вокруг вершины, разделяющей эти стороны; точка приложения силы будет перемещаться по границе ядра между полученными уже точками. Установим, как должна перемещаться сила Р , чтобы нейтральная ось проходила все время через одну и ту же точку В (,) — вращалась бы около нее. Подставляя координаты этой точки нейтральной оси в известное уравнение нейтральной оси (линии), получим:

Рис.2. Ядро сечения для многоугольной формы поперечного сечения

Таким образом координаты и точки приложения силы Р связаны линейно. При вращении нейтральной оси около постоянной точки В точка А приложения силы движется по прямой. Обратно, перемещение силы Р по прямой связано с вращением нейтральной оси около постоянной точки.

На Рис.3 изображены три положения точки приложения силы на этой прямой и соответственно три положения нейтральной оси. Таким образом, при многоугольной форме контура сечения очертание ядра между точками, соответствующими сторонам многоугольника, будет состоять из отрезков прямых линий.

Рис.3. Динамика построения ядра сечения

Если контур сечения целиком или частично ограничен кривыми линиями, то построение границы ядра можно вести по точкам. Рассмотрим несколько простых примеров построения ядра сечения.

При выполнении этого построения для прямоугольного поперечного сечения воспользуемся полученными формулами.

Для определения границ ядра сечения при движении точки А по оси Оу найдем то значение , при котором нейтральная ось займет положение Н 1 О 1

Рис.4. построение ядра для прямоугольного сечения.

Для этого сила должна двигаться по прямой 1 — 2. Точно так же можно доказать, что остальными границами ядра будут линии 2—3, 3—4 и 4—1.

Таким образом, для прямоугольного сечения ядро будет ромбом с диагоналями, равными одной трети соответствующей стороны сечения. Поэтому прямоугольное сечение при расположении силы по главной оси работает на напряжения одного знака, если точка приложения силы не выходит за пределы средней трети стороны сечения.

Рис.5. Динамика изменения напряжений при изменении эксцентриситета.

Эпюры распределения нормальных напряжений по прямоугольному сечению при эксцентриситете, равном нулю, меньшем, равном и большем одной шестой ширины сечения, изображены на Рис.5.

Отметим, что при всех положениях силы Р напряжение в центре тяжести сечения (точка О ABCD, описанного около двутавра (Рис.6а). Следовательно, очертание ядра для двутавра имеет форму ромба, как и для прямоугольника, но с другими размерами.

Для швеллера, как и для двутавра, точки 1, 2, 3, 4 контура ядра (Рис.6 б) соответствуют совпадению нейтральной оси со сторонами прямоугольника ABCD .

Лекция № 29. Совместные действия изгиба и кручения призматического стержня

Исследуем этот вид деформации стержня на примере расчета вала кругового (кольцевого) поперечного сечения на совместное действие изгиба и кручения (рис. 1).

Рис.1. Расчетная схема изогнутого и скрученного вала

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

КАФЕДРА «ОБЩЕТЕХНИЧЕСКИЕ ДИСЦИПЛИНЫ»

НАПРЯЖЕНИЙ ПРИ ВНЕЦЕНТРЕННОМ

РАСТЯЖЕНИИ ИЛИ СЖАТИИ

Методические указания

РПК «Политехник»

Волгоград

2007

УДК 539. 3/.6 (07)

Экспериментальное исследование распределения напряжений при внецентренном растяжении или сжатии: Методические указания / Сост. , ; Волгоград. гос. техн. ун-т. – Волгоград, 2007. – 11 с.

Подготовлены в соответствии с рабочей программой по дисциплине «Сопротивление материалов» и предназначены в помощь студентам, обучающимся по направлениям: 140200.

Ил. 5. Табл. 2. Библиогр.: 4 назв.

Рецензент: к. т. н., доцент

Печатается по решению редакционно-издательского совета

Волгоградского государственного технического университета

Составители: Александр Владимирович Белов, Наталья Георгиевна Неумоина

Анатолий Александрович Поливанов

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ

НАПРЯЖЕНИЙ ПРИ ВНЕЦЕНТРЕННОМ

РАСТЯЖЕНИИ ИЛИ СЖАТИИ

Методические указания

Темплан 2007 г., поз. № 18.


Подписано в печать г. Формат 60×84 1/16.

Бумага листовая. Печать офсетная.

Усл. печ. л. 0,69. Усл. авт. л. 0,56.

Тираж 100 экз. Заказ №

Волгоградский государственный технический университет

400131 Волгоград, просп. им. , 28.

РПК «Политехник»

Волгоградского государственного технического университета

400131 Волгоград, ул. Советская, 35.

© Волгоградский

государственный

технический

Университет 2007

ЛАБОРАТОРНАЯ РАБОТА № 10

Тема: Экспериментальное исследование распределения напряжений при внецентренном растяжении или сжатии.

Цель работы : Определить опытным путем величину нормальных напряжений в заданных точках поперечного сечения.

Время проведения : 2 часа.

1. Краткие теоретические сведения



Внецентренное растяжении (сжатие) прямого бруса имеет место в том случае, если внешняя сила, приложенная к брусу направлена параллельно его продольной оси, но действует на некотором расстоянии от центра тяжести поперечного сечения бруса (рис. 1).

Внецентренное сжатие – сложная деформация. Её можно представить как совокупность 3-х простых деформаций (общий случай – см. рис. 1) или 2-х простых деформаций (частный случай – см. рис.2).

Общий случай

Внецентренное сжатие

центральное

чистый изгиб

относительно оси х

у

Частный случай

Внецентренное сжатие

центральное сжатие

чистый изгиб относительно оси у

Все поперечные сечения бруса, испытывающего внецентренное сжатие являются равноопасными.

Там возникают одновременно три внутренних силовых фактора (общий случай):

· продольная сила N ;

· изгибающий момент М x ;

· изгибающий момент М y ,

и два внутренних силовых фактора (частный случай):

· продольная сила N ;

· изгибающий момент Мх и М y .

Этим внутренним силовым фактором соответствуют только нормальные напряжения, величину которых можно определить по формулам:

где А – площадь поперечного сечения бруса (м2 );

Ix ; Iy – главные центральные моменты инерции (м4 ).

Для прямоугольного сечения:

у х ;

х – расстояние от точки, в которой определяется напряжение, до оси у .

Согласно принципу независимости действия сил, напряжение в любой точке поперечного сечения при внецентренном сжатии определяется по формулам:

, (3)

. (4)

А при внецентренном растяжении:

. (5)

Знак перед каждым слагаемым выбирается в зависимости от вида сопротивления: растяжению соответствует знак «+», сжатию «-».

Для определения напряжения в угловой точке сечения используется формула:

, (6)

где Wx , Wy – моменты сопротивления поперечного сечения относительно главных центральных осей инерции поперечного сечения (м3 ).

Для прокатных профилей: двутавра, швеллера и т. п. моменты сопротивления приводятся в таблицах.

DIV_ADBLOCK127">


Аналогично определится знак у напряжения σМу . В этом случае сечение закрепляется по оси у (см. рис. 3 в).

2. Краткие сведения об оборудовании и образце

Схема испытания

На машине УММ-50 .

На машине Р-10.

Испытание на внецентренное растяжение производят на машине УММ-50 . Образец – стальная полоса прямоугольного поперечного сечения размерами в ´ h = 1,5 ´ 15 см . Испытание на внецентренное сжатие производят на разрывной машине Р-10 . Образец – короткая двутавровая стойка. Номер профиля 12 .

Описание используемых в данной работе машин подробно приводится в руководстве для выполнения лабораторной работы № 1.

В качестве измерительной аппаратуры здесь используются тензометрические датчики и прибор ИДЦ-I, принцип действия которых подробно изложен в руководстве для выполнения лабораторной работы № 3.

3. Выполнение лабораторной работы

3.1. Подготовка к эксперименту

1. Записать в отчет цель работы, сведения об оборудовании и материале испытываемых образцов.

2. Вычертите схему испытания, занести в отчет требуемые размеры образца.

3. Определить требуемые геометрические характеристики:

· для прямоугольника по формулам (2);

· для двутавра из таблицы сортамента.

Определить расстояния от заданных точек до оси х . Определить максимальное и минимальное значение силы F, а также значение ступени нагружения ΔF. Занести нагрузку в первую графу табл. 1.

(Примечание : максимальное значение силы F определяется по паспорту установки с учетом коэффициента концентрации напряжений исходя из условия, что расчетное значение напряжения не должно превышать предела текучести материала образца.)

Вычислить значение внутренних силовых факторов:

N = F ; Mx = F × y .

В зависимости от схемы испытания вычислить нормальное напряжение в указанных точках поперечного сечения по формулам (5) или (6). Значение напряжений записать в графу 3 табл. 2.

3.2. Экспериментальная часть

1. Произвести испытание, зафиксировав при заданных значениях нагрузки показание всех трех тензодатчиков по прибору ИДЦ-I.

2. Число измерений по каждому тензодатчику должно составлять не менее пяти. Данные записать в табл. 1.

3.3. Обработка опытных данных

1. Определить приращение показаний каждого тензодатчика

2. Определить среднее значение приращений:

https://pandia.ru/text/78/445/images/image021_18.gif" width="121" height="40 src=">.

7. Сделать выводы по работе.

Лабораторная работа №10

Тема:

Цель работы:

Теоретическое определение напряжений

Опытное определение напряжений

Таблица 1

Нагруз-

ка, F , кН

Показания прибора и их приращения

Сравнение теоретических и опытных результатов

Таблица 2

Нормальные напряжения МПа

% расхождения

опытные значения

теоретические значения

σ I

σ II

σ III

Эпюры напряжений с нанесением нулевой линии

Выводы
Работу выполнил студент:

Контрольные вопросы

1. Как получить деформацию внецентренное сжатие (растяжение)?

2. Из каких простых деформаций состоит сложная деформация внецентренное сжатие (растяжение)?

3. Какие внутренние силовые факторы возникают в поперечном сечении внецентренно сжатого бруса?

4. Как определяется их величина?

5. Какое сечение внецентренного сжатого бруса является опасным?

6. Как определить величину напряжений от каждого из внутренних силовых факторов в любой точке поперечного сечения?

7. По каким формулам определяются моменты инерций прямоугольного сечения относительно главных центральных осей инерции? Каковы единицы их измерения?

8. Как определить знак у напряжения от внутренних силовых факторов при внецентренном растяжении (сжатии)?

9. Какая гипотеза положена в основу определения напряжений при внецентренном сжатии? Сформулируйте её.

10. Формула для определения напряжений в любой точке поперечного сечения при внецентренном сжатии.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Феодосьев материалов. М.:Изд-во МГТУ, 2000 – 592c.

2. и др. Сопротивление материалов. Киев: Высшая школа, 1986. – 775с.

3. Степин материалов. М.: Высшая школа, 1988. – 367с.

4. Сопротивление материалов. Лабораторный практикум./, и др. М.: Дрофа, 2004. – 352с.

Внецентренным растяжением называется такой вид нагружения бруса, при котором внешние силы действуют вдоль продольной оси бруса, но не совпадают с ней (рис. 8.4). Определение напряжений производится с помощью принципа независимости действия сил. Внецентренное растяжение представляет сочетание осевого растяжения и косого (в частных случаях – плоского) изгиба. Формула для нормальных напряжений может быть получена как алгебраическая сумма нормальных напряжений, возникающих от каждого вида нагружения:

где ; ;

y F , z F – координаты точки приложения силы F .

Для определения опасных точек сечения необходимо найти положение нейтральной линии (н.л.) как геометрического места точек, в которых напряжения равны нулю.

.

Уравнение н.л. может быть записано как уравнение прямой в отрезках:

где и – отрезки, отсекаемые н.л. на осях координат,

, – главные радиусы инерции сечения.

Нейтральная линия разделяет поперечное сечение на зоны с растягивающими и сжимающими напряжениями. Эпюра нормальных напряжений представлена на рис. 8.4.

Если сечение симметрично относительно главных осей, то условие прочности записывается для пластичных материалов, у которых [s c ] = [s p ] = [s ], в виде

. (8.5)

Для хрупких материалов, у которых [s c ]¹[s p ], условие прочности следует записывать отдельно для опасной точки сечения в растянутой зоне:

и для опасной точки сечения в сжатой зоне:

,

где z 1 , y 1 и z 2 , y 2 – координаты наиболее удаленных от нейтральной линии точек сечения в растянутой 1 и сжатой 2зонах сечения (рис. 8.4).

Свойства нулевой линии

1. Нулевая линия делит все сечение на две зоны – растяжения и сжатия.

2. Нулевая линия прямая, так как координаты х и у в первой степени.

3. Нулевая линия не проходит через начало координат (рис. 8.4).

4. Если точка приложения силы лежит на главной центральной инерции сечения, то соответствующая ей нулевая линия перпендикулярна этой оси и проходит с другой стороны от начала координат (рис. 8.5).

5. Если точка приложения силы движется по лучу, выходящему из начала координат, то соответствующая ему нулевая линия движется за ним (рис. 8.6):

н.л

Рис. 8.5 Рис. 8.6

а) при движении точки приложения силы по лучу, исходящему из начала координат от нуля в бесконечность (y F ®∞, z F ®∞), а у ®0; а z ®0. Предельное состояние этого случая: нулевая линия пройдет через начало координат (изгиб);

б) при движении точки приложения силы (т. К) по лучу, исходящему из начала координат от бесконечности к нулю (y F ® 0 и z F ® 0), а у ®∞; а z ®∞. Предельное состояние этого случая: нулевая линия удаляется в бесконечность, а тело будет испытывать простое растяжение (сжатие).

6. Если точка приложения силы (т. К) движется по прямой, пересекающей координатные оси, то в этом случае нулевая линия будет вращаться вокруг некоторого центра, расположенного в противоположном от точки К квадранте.

8.2.3. Ядро сечения

Некоторые материалы (бетон, кирпичная кладка) могут воспринимать весьма незначительные растягивающие напряжения, а другие (например, грунт) не могут вовсе сопротивляться растяжению. Такие материалы используются для изготовления элементов конструкций, в которых не возникают растягивающие напряжения, и не применяются для изготовления элементов инструкций, испытывающих изгиб, кручение, центральное и внецентренное растяжения.

Из указанных материалов можно изготавливать только центрально сжатые элементы, в которых растягивающие напряжения не возникают, а также внецентренно сжатые элементы, если в них не образуются растягивающие напряжения. Это происходит в том случае, когда точка приложения сжимающей силы расположена внутри или на границе некоторой центральной области поперечного сечения, называемой ядром сечения.

Ядром сечения бруса называется его некоторая центральная область, обладающая тем свойством, что сила, приложенная в любой ее точке, вызывает во всех точках поперечного сечения бруса напряжения одного знака, т.е. нулевая линия не проходит через сечение бруса.

Если точка приложения сжимающей силы расположена за пределами ядра сечения, то в поперечном сечении возникают сжимающие и растягивающие напряжения. В этом случае нулевая линия пересекает поперечное сечение бруса.

Если сила приложена на границе ядра сечения, то нулевая линия касается контура сечения (в точке или по линии); в месте касания нормальные напряжения равны нулю.

При расчете внецентренно сжатых стержней, изготовляемых из материала, плохо воспринимающего растягивающие напряжения, важно знать форму и размеры ядра сечения. Это позволяет, не вычисляя напряжений, установить, возникают ли в поперечном сечении бруса растягивающие напряжения (рис. 8.7).

Из определения следует, что ядро сечения есть некоторая область, которая находится внутри самого сечения.

Для хрупких материалов сжимающую нагрузку следует прикладывать в ядре сечения, чтобы исключить в сечении зоны растяжения (рис. 8.7).

Для построения ядра сечения необходимо последовательно совмещать нулевую линию с контуром поперечного сечения так, чтобы нулевая линия не пе-ресекала сечение, и одновременно рассчитывать соответствующую ей точку

приложения сжимающей силы К с коор-

Рис. 8.7 динатами y F и z F по формулам:

; .

Полученные точки приложения силы с координатами y F , z F необходимо соединить отрезками прямых. Область, ограниченная полученной ломаной линией, и будет являться ядром сечения.

Последовательность построения ядра сечения

1. Определить положение центра тяжести поперечного сечения и главных центральных осей инерции у и z , а также значения квадратов радиусов инерции i y , i z .

2. Показать все возможные положения н.л., касающиеся контура сечения.

3. Для каждого положения н.л. определить отрезки a y и a z , отсекаемые ею от главных центральных осей инерции у и z.

4. Для каждого положения н.л. установить координаты центра давления y F , и z F .

5. Полученные центры давлений соединить отрезками прямых, внутри которых будет расположено ядро сечения.

Кручение с изгибом

Вид нагружения, при котором брус подвергается одновременно действию скручивающих и изгибающих моментов, называется изгибом с кручением.

При расчете воспользуемся принципом независимости действия сил. Определим напряжения по отдельности при изгибе и кручении (рис. 8.8).

При изгибе в поперечном сечении возникают нормальные напряжения, достигающие максимального значения в крайних волокнах

.

При кручении в поперечном сечении возникают касательные напряжения, достигающие наибольшего значения в точках сечения у поверхности вала

.

s
t
C
B
x
y
z
Рис. 8.9
s
s
t
t
Рис. 8.10
C
x
z
y
M
T
Рис. 8.8

Нормальные и касательные напряжения одновременно достигают наибольшего значения в точках С и В сечения вала (рис. 8.9). Рассмотрим напряженное состояние в точке С (рис. 8.10). Видно, что элементарный параллелепипед, выделенный вокруг точки С , находится при плоском напряженном состоянии.

Поэтому для проверки прочности применим одну из гипотез прочности.

Условие прочности по третьей гипотезе прочности (гипотезе наибольших касательных напряжений)

.

Учитывая, что , , получим условие прочности вала

. (8.6)

Если изгиб вала происходит в двух плоскостях, то условие прочности будет

.

Используя четвертую (энергетическую) гипотезу прочности

,

после подстановки s и t получим

. (8.7)

Вопросы для самопроверки

1. Какой изгиб называется косым?

2. Сочетанием каких видов изгиба является косой изгиб?

3. По каким формулам определяются нормальные напряжения в поперечных сечениях балки при косом изгибе?

4. Как находится положение нейтральной оси при косом изгибе?

5. Как определяются опасные точки в сечении при косом изгибе?

6. Как определяются перемещения точек оси балки при косом изгибе?

7. Какой вид сложного сопротивления называется внецентренным растяжением (или сжатием)?

8. По каким формулам определяются нормальные напряжения в поперечных сечениях стержня при внецентренном растяжении и сжатии? Какой вид имеет эпюра этих напряжений?

9. Как определяется положение нейтральной оси при внецентренном растяжении и сжатии? Запишите соответствующие формулы.

10. Какие напряжения возникают в поперечном сечении бруса при изгибе с кручением?

11. Как находятся опасные сечения бруса круглого сечения при изгибе с кручением?

12. Какие точки круглого поперечного сечения являются опасными при изгибе с кручением?

13. Какое напряженное состояние возникает в этих точках?