Внецентренное растяжение – сжатие. Определение напряжений. Условия прочности. Экспериментальное исследование распределения напряжений при внецентренном растяжении или сжатии Внецентренное растяжение

ми выше методами определения перемещений. Ранее было показано, что для

случая балки, защемленной одним концом и нагруженной на свободном конце

сосредоточенной

силой F, прогиб конца консоли в

вертикальной и горизон-

тальной плоскости определяется следующим образом

d y =

FCosa × l

d x =

FSina × l3

3 EI x

3 EI y

Угол наклона вектора полного перемещения по отношению к оси y :

tgg =

FSina × l3

× 3 EI x

Tg a

3 EI y × FCosa × l3

Из (8.12) следует, что при косом изгибе γ ≠ α и следовательно смеще-

ние центра сечения происходит не в плоскости действия изгибающего момента,

а в направлении нормали к нейтральной линии (см.8.8).

При косом изгибе прямого бруса нагрузками, расположенными в одной плоскости, упругая линия бруса будет плоской кривой. Однако плоскость изги-

ба не совпадает с плоскостью действия нагрузки. Если внешние силы и пары,

изгибающие брус, будут располагаться в разных плоскостях, то изогнутая ось бруса будет пространственной

8.2 Внецентренное растяжение (сжатие)

Внецентренное растяжение (сжатие) вызывается силой, параллельной

оси бруса, но не совпадающей с ней (рисунок 8.5).

Рисунок 8.5 - Внецентренное растяжение стержня

Точка приложения силы называется центром давления, а расстояние от центра тяжести до точки приложения силы называется эксцентриситетом и обо-

значается «е ».

8.2.1. Определение нормальных напряжений при внецентренном

растяжении (сжатии)

Пусть точка приложения внешней силы имеет координаты x F , y F (рису-

нок 8.5). При такой схеме нагружения внутренние силовые факторы в произ-

вольном поперечном сечении бруса равны:

N = F ,

M x = F × yF ,

M y = F × xF ,

где y F , z F - координаты точки приложения силы.

Таким образом, если перенести силу P в центр тяжести сечения(рисунок

8.5.б), то внецентренное растяжение(сжатие) может быть сведено к осевому растяжению (сжатию) и чистому косому изгибу.

s (x , y ) =

F × xF

F × yF

s (x, y) =

где i x =

i y =

Радиусы инерции сечения.

Ix / A

I x / A

Выражение в скобках в уравнении(8.15) показывает во сколько раз на-

пряжения при внецентренном растяжении(сжатии) больше напряжений цен-

трального растяжения. Переменными в формуле (8.15) являются два последних слагаемых, отражающих влияние изгиба. Так как при изгибе максимальные на-

пряжения возникают в точках, наиболее удаленных от нейтральной оси, то для определения наиболее опасных точек при внецентренном растяжении или сжа-

тии необходимо определить положение нейтральной оси.

8.2.2 Определение положения нейтральной линии при внецентренном растяжении (сжатии)

Обозначим коордиаты точек нейтральной оси x o , y o . Для определения по-

ложения нейтральной оси приравняем нулю выражение (8.15) и после сокраще-

ния на F/A получим уравнение нейтральной линии:

y = 0

iy 2

ix 2

Из уравнения (8.17) следует, что нейтральная линия при внецентренном растяжении (сжатии) не проходит через центр тяжести сечения. Нейтральная линия отсекает на осях координат отрезки x н , y н (рисунок 8.6). Чтобы найти от-

резок x н , отсекаемый на оси x, надо в уравнении (8.16) положить x o = x н , y o =0.

Тогда получим:

ix 2

x = -

iy 2

Из формулы (8.17) видно, что точка приложения силы и нейтральная ли-

ния всегда расположены по разные стороны от центра тяжести сечения, причем положение нейтральной линии определяется координатами точки приложения силы (рисунок 8.6).

Для определения наиболее опасных точек необходимо провести -каса тельные к контуру сечения параллельные нейтральной линии. Наиболее уда-

ленные точки касания А и В , расположенные в растянутой и сжатой зоне, яв-

ляются наиболее опасными (рисунок 8.6). Эпюра напряжений строится на оси,

перпендикулярной к нейтральной линии сечения и ограничена прямой линией.

Условие прочности имеет следующий вид:

F × xF

× x

F × y F

× y

A £

где y F , z F - координаты опасной точки, а [σ ] - допускаемое напряжение на растяжение и сжатие.

Рисунок 8.6 - Определение положения нейтральной линии

В тех случаях, когда в наиболее удаленной от нейтральной линии точке действует напряжение сжатия, а материал элемента конструкции хрупкий,

опасной может быть точка, в которой действует наибольшее растягивающее напряжение.

8.2.3 Определение положения ядра сечения

При приближении точки приложения силы к центру тяжести сечения (x н и y н по абсолютной величине возрастают) нейтральная линия будет удаляться от центра. При этом в сечении увеличивается доля напряжений одного знака, так как уменьшаются напряжения от изгиба. В пределе при x F = y F= 0 нейтральная линия удаляется в бесконечность. В этом случае будет иметь место центральное растяжение (сжатие) бруса.

Всегда можно найти такое положение точки приложения силы, при кото-

ром нейтральная линия будет касаться контура сечения, нигде не пересекая его.

В этом случае в сечении напряжения будут только одного знака. Зона вблизи центра тяжести сечения, приложение продольной нагрузки в которой вызывает появление во всех точках сечения напряжений только одного знака, называется

ядром сечения . До тех, пока точка приложения силы находится внутри ядра,

нейтральная линия не пересекает контур сечения, и напряжения во всем сече-

нии будут одного знака. Если точка приложения силы расположена вне ядра, то нейтральная линия пересекает контур сечения, и тогда в сечении будут дейст-

вовать напряжения разного знака. Указанное обстоятельство необходимо учи-

тывать при расчете элементов конструкций из хрупких материалов, плохо вос-

принимающих растягивающие нагрузки. В этом случае необходимо приклады-

вать внешние силы так, чтобы во всем сечении действовали только напряжения сжатия. Для этого точка приложения равнодействующей внешних сил должна находиться внутри ядра сечения.

Для построения ядра сечения необходимо задаться различными положе-

ниями нейтральной оси и вычислить соответствующие точки приложения силы

F по формулам (8.17).

iy 2

ронами b и h. Совместим вначале нейтральную линию с одной из сторон пря-

моугольника (положение I-I). При этом координаты нейтральной линии равны

x í = - b ; y í = ¥ , а учитывая, что

Из формулы (8.17) получим для точки 1"

Совместим теперь нейтральную линию с другой стороной (положение II-

II). Координаты нейральной линии в этом положении равны x = ¥ ;

Тогда координаты точки 2" ядра сечения

Аналогично определяем координаты точек 3" и 4" .

Так как при переходе нейтральной линии с одной стороны на другую она поворачивается вокруг угловой точки сечения, то точка приложения силы пе-

ремещается по прямой, образуя контур ядра. Таким образом, ядро сечения пря-

моугольника представляет собой ромб с диагоналями, равными одной трети со-

ответствующей стороны.

Построим ядро для круглого сечения (рисунок 8.8).

Рисунок 8.8 - Ядро сечения для круглого сечения

В круге все центральные оси являются главными, поэтому при касании нейтральной линии I-I в любой точке окружности точка I" ядра сечения будет

лежать на том же диаметре с противоположной стороны относительно центра

тяжести. Положение нейтральной линии определяется координатами: x í = R , y í = ¥ .

Тогда координаты точки 1" ядра

Таким образом, ядро сечения для круглого сечения представляет собой круг с радиусом R/4 или d/8.

Стержень нагружен внецентренно приложенной силой Р=400кН (прису-

нок 8.9). Определить напряжения в точках А, В, С и D. Размеры сечения приве-

дены на рисунке. Определить положение нейтральной оси.

Напряжения при внецентренном растяжении-сжатии определяются по формуле (8.15)

s (x, y) =

Рисунок 8.9 – Пример внецентренного приложения нагрузки

1. Определим моменты инерции поперечного сечения

Для определения внутренних усилий, в поперечных сечениях бруса при внецентренном растяжении (сжатии) заменим заданную систему сил на статически эквивалентную систему других сил. На основании принципа Сен-Венана такая замена не вызовет изменений в условиях нагружения и деформации частей бруса, достаточно удаленных от места приложения сил.

Сначала перенесем точку приложения силы на ось и приложим в этой точке силу, равную силе, но противоположно направленную (рис.3.2). Чтобы оставить силу на оси, к ее действию необходимо добавить действие пары сил, отмеченных двумя чертами, или момент. Далее перенесем силу в центр тяжести сечения и в этой точке приложим силу, равную силе, но противоположно направленную (рис.3.2). Чтобы оставить силу в центре тяжести, к ее действию необходимо добавить еще одну пару сил, отмеченных крестиками, или момент.

Таким образом, действие силы, приложенной к сечению внецентренно, эквивалентно совместному действию центрально приложенной силы и двух внешних сосредоточенных моментов и.

Пользуясь методом сечений, нетрудно установить, что во всех попе­речных сечениях внецентренно растянутого (сжатого) бруса действуют следующие внутренние силовые факторы: продольная сила и два изги­бающих момента и (рис.3.3).

Напряжения в поперечных сечениях бруса определим, используя прин­цип независимости действия сил. От всех внутренних силовых факторов в поперечных сечениях возникают нормальные напряжения. Знаки напряжений устанавливают по характеру деформаций: плюс - растяжение, минус - сжатие. Расставим знаки напряжений от каждого из внутренних силовых факторов в точках, пересечения осей и с контуром поперечного сечения (рис.3.3). От продольной силы во всех точках сечения оди­наковы и положительны; от момента в точке напряжения - плюс, в точке - минус, в точках и, т.к. ось является в этом случае нейтральной линией; от момента в точке напряжения - плюс, в точке - минус, в точках и, т.к. ось в этом случае является нейтральной линией.

Полное напряжение в точке с координатами и, будет равно:

Самой нагруженной точкой в сечении произвольной формы является точка, наиболее удаленная от нейтральной линии. В связи с этим, большое значение приобретают вопросы, связанные с определением положения нейтральной линии.

Определение положения нейтральной линии

Положение нейтральной линии можно определить с помощью формулы (3.1), приравняв нормальные напряжения нулю



здесь и - координаты точки, лежащей на нейтральной линии.

Последнее выражение можно преобразовать, используя формулы для радиусов инерции: и. Тогда

Из уравнения (3.2) видно, что нейтральная линия при внецентренном растяжении (сжатии) - это прямая, не проходящая через начало координат (центр тяжести поперечного сечения).

Проведем эту прямую через две точки, лежащие на координатных осях (рис. 3.4). Пусть точка 1 лежит на оси, тогда ее координатами будет и, а точка 2 – на оси, тогда ее координатами будет и (на основании уравнения (3.2)).

Если координаты точки приложения силы (полюса) положительны, то координаты точек 1 и 2 отрицательны, и наоборот. Таким образом, полюс и нейтральная линия располагаются по разные стороны от начала координат.

Определения положения нейтральной линии позволяет выявить опасные точки сечения, т.е. точки, в которых нормальные напряжения принимают наибольшие значения. Для этого следует построить касательные к контуру сечения, параллельные нейтральной линии. Точки касания и будут являться опасными (рис. 3.4).

Условия прочности для опасных точек составляют в зависимости от свойств того материала, из которого изготовлен брус. Так как хрупкий материал обладает различными свойствами в условиях растяжения и сжатия – плохо сопротивляется растяжению и хорошо сжатию, условия прочности составляют для двух точек: где действуют максимальные растягивающие (т.) и максимальные сжимающие (т.) напряжения (рис. 3.4)

Для пластичного материала, который одинаково сопротивляется и растяжению и сжатию, составляют одно условие прочности для точки поперечного сечения, где имеют место максимальные по абсолютной величине нормальные напряжения. В нашем случае такой точкой является точка, в которой действуют напряжения одного знака

Понятие о ядре сечения

При построении нейтральной линии (рис. 3.4) определялись координаты точек 1 и 2, через которые она и проводилась



Координаты точек, лежащих на нейтральной линии, зависят от положения точки приложения силы (полюса) с координатами. Если координаты полюса уменьшаются, т.е. полюс приближается к центру тяжести сечения, то увеличиваются, т.е. нейтральная линия может выйти за пределы сечения или касаться контура сечения. В этом случае в сечении будут иметь место напряжения одного знака.

Область приложения продольных сил, которые в этом случае вызывают в поперечном сечении напряжения одного знака, называется ядром сечения .

Вопрос определения ядра сечения является наиболее актуальным для элементов конструкций из хрупкого материала, работающих на внецентренное сжатие, с целью получения в поперечном сечении только сжимающих напряжений, т.к. хрупкий материал плохо сопротивляется деформации растяжения. Для этого необходимо задаться рядом положений нейтральной линии, проводя ее через граничные точки контура, и вычислить координаты соответствующих точек приложения силы, по формулам, вытекающим из (3.5).

Геометрическое место рассчитанных таким образом точек и определит контур ядра сечения. На рис. 3.6 показаны примеры ядра сечения для распространенных форм.

Рассмотрим пример расчетов на внецентренное растяжение-сжатие.

Пример 3.1. Стальная полоса шириной =10 см и толщиной =1 см, центрально растянутая силами =70 кН, имеет прорезь шириной =3 см (рис. 3.6). Определить наибольшие нормальные напряжения в сечении, не учитывая концентрации напряжений. Какой ширины могла бы быть прорезь при той же величине растягивающего усилия, если бы она была расположена посередине ширины полосы?

Решение. При несимметричной прорези центр тяжести ослабленного сечения смещается от линии действия силы вправо и возникает внецентренное растяжение. Для определения положения центра тяжести () ослабленное сечение представим как большой прямоугольник размерами (фигура I) из которого удален малый прямоугольник с размерами (фигура II). За исходную ось примем ось.

В этом случае в поперечном сечении возникает два внутренних силовых фактора: продольная сила и изгибающий момент.

С целью определения опасной точки расставим знаки напряжений по боковым сторонам поперечного сечения (рис. 3.6). От продольной силы во всех точках сечения имеют место положительные (растягивающие) напряжения. От изгибающего момента слева от оси имеют место растягивающие напряжения (знак плюс), справа – сжимающие (знак минус).

Таким образом, максимальные нормальные напряжения возникают в т.

где - площадь ослабленного сечения, равная =7 см 2 ;

Момент инерции ослабленного сечения относительно главной центральной оси

Расстояние от нейтральной линии () до наиболее удаленной точки (т.)

В результате максимальные нормальные напряжения будут равны

При симметричной прорези шириной возникает только растяжение

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

КАФЕДРА «ОБЩЕТЕХНИЧЕСКИЕ ДИСЦИПЛИНЫ»

НАПРЯЖЕНИЙ ПРИ ВНЕЦЕНТРЕННОМ

РАСТЯЖЕНИИ ИЛИ СЖАТИИ

Методические указания

РПК «Политехник»

Волгоград

2007

УДК 539. 3/.6 (07)

Экспериментальное исследование распределения напряжений при внецентренном растяжении или сжатии: Методические указания / Сост. , ; Волгоград. гос. техн. ун-т. – Волгоград, 2007. – 11 с.

Подготовлены в соответствии с рабочей программой по дисциплине «Сопротивление материалов» и предназначены в помощь студентам, обучающимся по направлениям: 140200.

Ил. 5. Табл. 2. Библиогр.: 4 назв.

Рецензент: к. т. н., доцент

Печатается по решению редакционно-издательского совета

Волгоградского государственного технического университета

Составители: Александр Владимирович Белов, Наталья Георгиевна Неумоина

Анатолий Александрович Поливанов

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ

НАПРЯЖЕНИЙ ПРИ ВНЕЦЕНТРЕННОМ

РАСТЯЖЕНИИ ИЛИ СЖАТИИ

Методические указания

Темплан 2007 г., поз. № 18.


Подписано в печать г. Формат 60×84 1/16.

Бумага листовая. Печать офсетная.

Усл. печ. л. 0,69. Усл. авт. л. 0,56.

Тираж 100 экз. Заказ №

Волгоградский государственный технический университет

400131 Волгоград, просп. им. , 28.

РПК «Политехник»

Волгоградского государственного технического университета

400131 Волгоград, ул. Советская, 35.

© Волгоградский

государственный

технический

Университет 2007

ЛАБОРАТОРНАЯ РАБОТА № 10

Тема: Экспериментальное исследование распределения напряжений при внецентренном растяжении или сжатии.

Цель работы : Определить опытным путем величину нормальных напряжений в заданных точках поперечного сечения.

Время проведения : 2 часа.

1. Краткие теоретические сведения



Внецентренное растяжении (сжатие) прямого бруса имеет место в том случае, если внешняя сила, приложенная к брусу направлена параллельно его продольной оси, но действует на некотором расстоянии от центра тяжести поперечного сечения бруса (рис. 1).

Внецентренное сжатие – сложная деформация. Её можно представить как совокупность 3-х простых деформаций (общий случай – см. рис. 1) или 2-х простых деформаций (частный случай – см. рис.2).

Общий случай

Внецентренное сжатие

центральное

чистый изгиб

относительно оси х

у

Частный случай

Внецентренное сжатие

центральное сжатие

чистый изгиб относительно оси у

Все поперечные сечения бруса, испытывающего внецентренное сжатие являются равноопасными.

Там возникают одновременно три внутренних силовых фактора (общий случай):

· продольная сила N ;

· изгибающий момент М x ;

· изгибающий момент М y ,

и два внутренних силовых фактора (частный случай):

· продольная сила N ;

· изгибающий момент Мх и М y .

Этим внутренним силовым фактором соответствуют только нормальные напряжения, величину которых можно определить по формулам:

где А – площадь поперечного сечения бруса (м2 );

Ix ; Iy – главные центральные моменты инерции (м4 ).

Для прямоугольного сечения:

у х ;

х – расстояние от точки, в которой определяется напряжение, до оси у .

Согласно принципу независимости действия сил, напряжение в любой точке поперечного сечения при внецентренном сжатии определяется по формулам:

, (3)

. (4)

А при внецентренном растяжении:

. (5)

Знак перед каждым слагаемым выбирается в зависимости от вида сопротивления: растяжению соответствует знак «+», сжатию «-».

Для определения напряжения в угловой точке сечения используется формула:

, (6)

где Wx , Wy – моменты сопротивления поперечного сечения относительно главных центральных осей инерции поперечного сечения (м3 ).

Для прокатных профилей: двутавра, швеллера и т. п. моменты сопротивления приводятся в таблицах.

DIV_ADBLOCK127">


Аналогично определится знак у напряжения σМу . В этом случае сечение закрепляется по оси у (см. рис. 3 в).

2. Краткие сведения об оборудовании и образце

Схема испытания

На машине УММ-50 .

На машине Р-10.

Испытание на внецентренное растяжение производят на машине УММ-50 . Образец – стальная полоса прямоугольного поперечного сечения размерами в ´ h = 1,5 ´ 15 см . Испытание на внецентренное сжатие производят на разрывной машине Р-10 . Образец – короткая двутавровая стойка. Номер профиля 12 .

Описание используемых в данной работе машин подробно приводится в руководстве для выполнения лабораторной работы № 1.

В качестве измерительной аппаратуры здесь используются тензометрические датчики и прибор ИДЦ-I, принцип действия которых подробно изложен в руководстве для выполнения лабораторной работы № 3.

3. Выполнение лабораторной работы

3.1. Подготовка к эксперименту

1. Записать в отчет цель работы, сведения об оборудовании и материале испытываемых образцов.

2. Вычертите схему испытания, занести в отчет требуемые размеры образца.

3. Определить требуемые геометрические характеристики:

· для прямоугольника по формулам (2);

· для двутавра из таблицы сортамента.

Определить расстояния от заданных точек до оси х . Определить максимальное и минимальное значение силы F, а также значение ступени нагружения ΔF. Занести нагрузку в первую графу табл. 1.

(Примечание : максимальное значение силы F определяется по паспорту установки с учетом коэффициента концентрации напряжений исходя из условия, что расчетное значение напряжения не должно превышать предела текучести материала образца.)

Вычислить значение внутренних силовых факторов:

N = F ; Mx = F × y .

В зависимости от схемы испытания вычислить нормальное напряжение в указанных точках поперечного сечения по формулам (5) или (6). Значение напряжений записать в графу 3 табл. 2.

3.2. Экспериментальная часть

1. Произвести испытание, зафиксировав при заданных значениях нагрузки показание всех трех тензодатчиков по прибору ИДЦ-I.

2. Число измерений по каждому тензодатчику должно составлять не менее пяти. Данные записать в табл. 1.

3.3. Обработка опытных данных

1. Определить приращение показаний каждого тензодатчика

2. Определить среднее значение приращений:

https://pandia.ru/text/78/445/images/image021_18.gif" width="121" height="40 src=">.

7. Сделать выводы по работе.

Лабораторная работа №10

Тема:

Цель работы:

Теоретическое определение напряжений

Опытное определение напряжений

Таблица 1

Нагруз-

ка, F , кН

Показания прибора и их приращения

Сравнение теоретических и опытных результатов

Таблица 2

Нормальные напряжения МПа

% расхождения

опытные значения

теоретические значения

σ I

σ II

σ III

Эпюры напряжений с нанесением нулевой линии

Выводы
Работу выполнил студент:

Контрольные вопросы

1. Как получить деформацию внецентренное сжатие (растяжение)?

2. Из каких простых деформаций состоит сложная деформация внецентренное сжатие (растяжение)?

3. Какие внутренние силовые факторы возникают в поперечном сечении внецентренно сжатого бруса?

4. Как определяется их величина?

5. Какое сечение внецентренного сжатого бруса является опасным?

6. Как определить величину напряжений от каждого из внутренних силовых факторов в любой точке поперечного сечения?

7. По каким формулам определяются моменты инерций прямоугольного сечения относительно главных центральных осей инерции? Каковы единицы их измерения?

8. Как определить знак у напряжения от внутренних силовых факторов при внецентренном растяжении (сжатии)?

9. Какая гипотеза положена в основу определения напряжений при внецентренном сжатии? Сформулируйте её.

10. Формула для определения напряжений в любой точке поперечного сечения при внецентренном сжатии.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Феодосьев материалов. М.:Изд-во МГТУ, 2000 – 592c.

2. и др. Сопротивление материалов. Киев: Высшая школа, 1986. – 775с.

3. Степин материалов. М.: Высшая школа, 1988. – 367с.

4. Сопротивление материалов. Лабораторный практикум./, и др. М.: Дрофа, 2004. – 352с.

Рассмотрим прямой стержень, нагруженный на торце силами, направленными параллельно оси Ох. Равнодействующая этих сил F приложена в точке С. В локальной правосторонней системе координат yOz , совпадающей с главными центральными осями сечения, координаты точки С равны а и b (рис. 5.18).

Заменим приложенную нагрузку статически эквивалентной ей системой сил и моментов. Для этого перенесем равнодействующую силу F в центр тяжести сечения О и догрузим стержень двумя изгибающими моментами, равными произведению силы Т^на ее плечи относительно осей координат: M ff = Fa и M z = Fb.

Отметим, что по правилу правосторонней системы координат для точки С, лежащей в первой четверти, изгибающие моменты формально получат сле-

Рис. 5.18. Прямой стержень, нагруженный на торце силами, направленными параллельно оси Ох

дующие знаки: М у = Fa и М 7 = -Fb. При этом в элементарной площадке, лежащей в первой четверти, оба момента вызывают растягивающее напряжение.

Используя принцип независимости действия сил, определим напряжения в текущей точке сечения с координатами у и z от каждого силового фактора отдельно. Общее напряжение получим суммированием всех трех составляющих напряжений:

Определим положение нейтральной оси. Для этого в соответствии с формулой (5.69) приравняем к нулю значение нормального напряжения в текущей точке:

В результате простых преобразований получим уравнение нейтральной линии

где i y и i z - главные радиусы инерции , определяемые по формулам (3.14).

Таким образом, в случае внецентренного растяжения-сжатия нейтральная линия не проходит через центр тяжести сечения (рис. 5.19), на что указывает наличие в уравнении (5.70) отличающегося от нуля свободного члена.

Максимальные напряжения возникают в точках сечения А и В, наиболее удаленных от нейтральной линии. Установим соотношение между координатами точки приложения силы и положением нейтральной линии. Для этого определим точки пересечения этой линией координатных осей:

Рис. 5.19.

Полученные формулы показывают, что координата точки приложения силы а и координата точки пересечения нейтральной линией оси координат Oz (точка г 0) имеют противоположные знаки. То же самое можно сказать о величинах b и у 0 . Таким образом, точка приложения равнодействующей силы и нейтральная линия находятся по разные стороны относительно начала координат.

Согласно полученным формулам при приближении точки приложения силы к центру тяжести сечения нейтральная линия отдаляется от центральной зоны. В предельном случае (а = b = 0) приходим к случаю центрального растяжения-сжатия.

Представляет интерес определение зоны приложения силы, при котором напряжения в сечении будут иметь одинаковый знак. В частности, для материалов, плохо сопротивляющихся растяжению, сжимающую силу рационально прилагать именно в этой зоне, чтобы в сечении действовали только сжимающие напряжения. Такая зона вокруг центра тяжести сечения называется ядром сечения.

Если сила приложена в ядре сечения, то нейтральная линия не пересекает сечение. В случае приложения силы по границе ядра сечения нейтральная линия касается контура сечения. Для определения ядра сечения можно использовать формулу (5.71).

Если нейтральную линию представить как касательную к контуру сечения и рассмотреть все возможные положения касательной и соответствующие этим положениям точки приложения силы, то точки приложения силы очертят ядро сечения.


Рис. 5.20.

а - эллипс; 6 - прямоугольник

Вторым практически важным случаем сложения деформаций от изгиба и от продольных сил является так называемое внецентренное сжатие или растяжение, вызываемое одними продольными силами. Этот вид нагружения довольно распространен в технике, так как в реальной ситуации почти невозможно приложить растягивающую нагрузку точно в центре тяжести.

Внецентренным растяжением-сжатием называется случай, когда равнодействующая сил, приложенных к отброшенной части стержня, направлена параллельно оси стержня, но не совпадает с этой осью (рис.8.10).

Рис. 8 .1 0

Внецентренное растяжение (сжатие) испытывают короткие стержни. Все сечения являются равноопасными, поэтому нет необходимости в построении эпюр внутренних силовых факторов.

Представим, что после проведения разреза равнодействующая F сил действующих на отброшенную часть и приложенная к оставшейся проходит через точку с координатами (x F ; y F) в главных центральных осях поперечного сечения (рис. 8.11).

Рис.8.11

Приведем силу F в центр тяжести сечения, т.е. направим вдоль оси стержня. При этом появятся две пары сил M x и M y относительно главных центральных осей (рис.8.11c).

Таким образом, в поперечном сечении стержня при внецентренном растяжении и сжатии возникают три внутренних силовых фактора: нормальная сила N = F и два изгибающих момента M x = F y F и M y = F x F относительно главных центральных осей поперечного сечения.

Величина нормальных напряжений вычисляется по формуле (8.1), которую можно преобразовать к виду

,

или, вынося первое слагаемое за скобки,

г
де

Мы получили формулу нормальных напряжений в поперечном сечении при внецентренном растяжении или сжатии. Если сила растягивающая, то перед скобкой ставится знак плюс, если сила сжимающая, то ставится – минус.

Т
огда уравнение нейтральной линии записывается в виде:

или в форме уравнения в отрезках:

г
де

Из формул (8.9) следуют некоторые закономерности, связывающие положения полюса (т. е. точки приложения силы) и нейтральной линии, которые удобно использовать для анализа решения задачи. Перечислим самые важные из этих закономерностей:

Нейтральная линия всегда расположена в квадранте, противоположном тому, в котором находится полюс (рис. 8.12);

Если полюс находится на одной из главных осей, то нейтральная линия перпендикулярна этой оси;

Если полюс приближается к центру тяжести сечения, то нейтральная линия удаляется от него.

Если полюс движется по прямой линии, то нейтральная линия поворачивается вокруг неподвижной точки.

Рис.8.12

Для сечений со сложным контуром знание положения нулевой линии очень важно. Наибольшие по величине нормальные напряжения возникают в точках поперечного сечения наиболее удаленных от нулевой линии.

Наибольшее растягивающее нормальное напряжение возникает в точке А (рис.8.12)

(8.10)

а наибольшее сжимающее нормальное напряжение возникает в точке В

(8.11)

Таким образом, при внецентренном растяжении кроме растягивающих нормальных напряжений в поперечном сечении могут возникнуть и сжимающие. При внецентренном сжатии – наоборот.

Если материал стержня одинаково сопротивляется растяжению и сжатию, то условие прочности получает такой вид:

.

Хрупкий материал обладает различными свойствами в условиях растяжения и сжатия – плохо сопротивляется растяжению и хорошо сжатию, условия прочности составляют для двух точек: где действуют максимальные растягивающие (т. A ) и максимальные сжимающие (т. B ) напряжения